Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetic sedimentation of Rhizobium-aggregates produced by leguminous lectins

  • 45 Accesses

  • 1 Citations

Abstract

Lectins from Canavalia brasiliensis (CnBr), Cratylia floribunda (CFL), Vatairea macrocarpa (VML) and Phaseolus vulgaris (PHA) aggregate Rhizobiumbacteria. The relationship between specific sedimentation rate, ν′ (based on bacterial dry biomass) of bacterial aggregates and lectin concentrations was hyperbolic and showed bacterial surface affinity by lectins. R. tropici (Rt), R. leguminosarum bv. phaseoli (Rlp) and R. etli (Re) surfaces showed predominantly receptors of galactosidic nature. The Rt surfaces showed very high affinities (k s = ±8.6 × 10−8 ag lectin protein ml−1) by Gal-specific lectins (PHA and VML), and very low affinities (ks=± 4.9 × 10−6) by Glc-specific lectins (CnBr and CFL). The Rlp surface had intermediate affinities by lectins. The Re surface showed high affinities by PHA (ks= ±1.26 × 10−8) and intermediate affinities by VML, CnBr and CFL. The relationship between sedimentation specific ν′′ (based on lectin weight) and bacterial density was a sigmoid and showed lectin affinity by Rt surfaces. The bacterial sedimentation showed positive cooperative binding of lectins. The V′′max induced by Glc-specific lectins was ±20 of that produced by Gal-specific lectins. The PHA affinity (ks= 1.19 mg dry biomass ml−1) was larger than VML (ks = 1.23). The Glc-specific lectin affinities were smaller than those of Gal-specific. The apparent binding site number of lectins (napp) was: 2.7-PHA; 2.2-VML; 3.2-CFL and 3.2-CnBr. The dissociation constant, ks, of lectin-binding kinetics decreased with sugar-hapten treatment (10 μM). The napp decreased in PHA and CFL, increasing in VML + sugar-hapten treatment. This study showed that there is a difference in Rhizobium surfaces for lectin binding.

This is a preview of subscription content, log in to check access.

References

  1. R. Bos H. Mei Particlevan der H.J. Busscher (1999) ArticleTitlePhysico-chemistry of initial microbial adhesive interactions–its mechanisms and methods for study FEMS Microbiology Reviews 23 179–230

  2. G. Brelles-Mariño G.A. Costa J.L. Boiardi (1996) ArticleTitleEnhancement of infection thread formation by Rhizobium etli incubated with bean seed lectin Microbiological Research 151 243–246

  3. J.J. Calvete H.H. Thole M. Raida C. Urbanke A. Romero T.B. Grangeiro M.V. Ramos I.M.A. Rocha F.N. Guimaraes B.S. Cavada (1999) ArticleTitleMolecular characterization and crystallization of Diocleinae lectins Biochimica et Biophysica Acta 1430 367–375

  4. R.W. Carlson B. Reuhs T.-B. Chen U.R. Bhat K.D. Noel (1995) ArticleTitleLipopolysaccharide core structures in Rhizobium etli and mutants deficient in O-antigen Journal of Biological Chemistry 270 11783–11788

  5. B.S. Cavada C.F. Santos T.B. Grangeiro E.P. Nunes P.V.P. Sales R.L. Ramos A.M. Souza ParticleDe C.V. Crisostomo J.J. Calvete (1998) ArticleTitlePurification and characterization of a lectin from seeds of Vatairea macrocarpa Duke Phytochemistry 49 675–680

  6. R. Diebold K.D. Noel (1989) ArticleTitleRhizobium leguminosarum exopolysaccharide mutants–biochemical and genetic analyses and symbiotic behaviour on 3 hosts Journal of Bacteriology 171 4821–4830

  7. B.D. Eardly F.-S. Wang T.S. Whittam R.K. Selander (1995) ArticleTitleSpecies limits in Rhizobium populations that nodulate the common bean (Phaseolus vulgaris) Applied and Environmental Microbiology 61 507–512

  8. L.S. Forsberg U.R. Bhat R.W. Carlson (2000) ArticleTitleStructural characterization of the O-antigenic polysaccharide of the lipopolysaccharide from Rhizobium etli strain CE3 Journal of Biological Chemistry 275 18851–18863

  9. A.M. Gil-Serrano I. González-Jiménez P.T. Mateo M. Bernabé J. Jiménez-Barbero M. Megías M.J. Romero-Vázquez (1995) ArticleTitleStructure analysis of the O-antigen of the lipopolysaccharide of Rhizobium tropici CIAT899 Carbohydrate Research 275 285–294

  10. T.B. Grangeiro A. Schriefer J.J. Calvete M. Raida C. Urbanke M. Barral-Netto B.S. Cavada (1997) ArticleTitleMolecular cloning and characterization of ConBr, the lectin of Canavalia brasiliensis seeds European Journal of Biochemistry 248 43–48

  11. T. Hatakeyama K. Murakami Y. Miyamoto N. Yamasaki (1996) ArticleTitleAn assay for lectin activity using microtiter plate with chemically immobilized carbohydrates Analytical Biochemistry 237 188–192

  12. A.M. Hirsch (1999) ArticleTitleRole of lectins (and rhizobial exopolysaccharides) in legume nodulation Current Opinion in Plant Biology 2 320–326

  13. V. Jayaraman H.R. Das (1998) ArticleTitleInteraction of peanut root lectin (PRA II) with rhizobial lipopolysaccharides Biochimica et Biophysica Acta 1381 7–11

  14. J.W. Kijne M.A. Bauchrowitz C.L. Diaz (1997) ArticleTitleRoot lectins and rhizobia Plant Physiology 115 869–873

  15. T. Laeremans J. Vanderleyden (1998) ArticleTitleReview: infection and nodulation signaling in Rhizobium–Phaseolus vulgaris symbiosis World Journal of Microbiology and Biotechnology 14 787–808

  16. A.R. Lodeiro S.L. López-Gracía T.E.E. Vázquez G. Favelukes (2000) ArticleTitleStimulation of adhesiveness, infectivity, and competitiveness for nodulation of Bradyrhizobium japonicum by its pretreatment with soybean seed lectin FEMS Microbiology Letters 188 177–184

  17. R. Loris T. Hamelryck J. Bouckaert L. Wyns (1998) ArticleTitleLegume lectin structure Biochimica et Biophysica Acta 1383 9–36

  18. M.G. Mestrallet S.S. Defilpo A. Abril (1999) ArticleTitleEfecto de la adición de lectina específica sobre la simbiosis Rhizobium leguminosarum-Phaseolus vulgaris Revista Argentina de Microbiologia 31 72–77

  19. N.P.J. Price (1999) ArticleTitleCarbohydrate determinants of Rhizobium–legume symbioses Carbohydrate Research 317 1–9

  20. M.V. Ramos B.S. Cavada J.J. Calvete A.H. Sampaio A.M. Mazard A. Barre T.B. Grangeiro B.T. Freitas K.B. Leite P. Rougé (1999) ArticleTitleSpecificity of the Vatairea macrocarpa lectin towards glycans exhibiting exposed Gal/GalNAc residues Protein and Peptide Letters 6 163–171

  21. W.I. Weis C.T. Drickamer (1996) ArticleTitleStructural basis of lectin–carbohydrate recognition Annual Review of Biochemistry 65 441–473

  22. B.A. Williams M.C. Chervenak E.J. Toone (1992) ArticleTitleEnergetics of lectin-carbohydrate binding–a microcalorimetric investigation of Concanavalin A-oligomannoside complexation Journal of Biological Chemistry 267 22907–22911

  23. M.A. Wu S.C. Song S. Sugii A. Herp (1997) ArticleTitleDifferential binding, properties of Gal/GalNAc specific lectins available for characterization of glycoreceptors Indian Journal of Biochemistry and Biophysics 34 61–71

Download references

Author information

Correspondence to Cosme R. Martínez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Martínez, C.R., Netto, A.M., Figueiredo, M.V. et al. Kinetic sedimentation of Rhizobium-aggregates produced by leguminous lectins. World J Microbiol Biotechnol 21, 75–82 (2005). https://doi.org/10.1007/s11274-004-2777-0

Download citation

Keywords

  • Aggregation
  • cooperative binding
  • lectin
  • Rhizobium
  • sedimentation