Induction, and production studies of a novel glucoamylase of Aspergillus niger

  • M. Ibrahim RajokaEmail author
  • Amber Yasmeen


The influence of carbon and nitrogen sources on the production of a raw-starch-digesting glucoamylase was investigated. The enzyme production was variable according to the carbon source. Levels of glucoamylase were minimal in the presence of even low concentrations of glucose while its production was stimulated by other carbohydrates. Wheat bran and cellulose were the most effective inducers of glucoamylase activities, followed by rice bran. Exogenously supplied glucose inhibited the synthesis of the enzyme in cultures of A. niger growing on wheat bran. In defined medium with maltose, the glucoamylase titres were 5.2- to 16.7-fold higher with cells growing on monomeric sugars and 1.5 times higher than cells growing on other disaccharides. It appeared that synthesis of glucoamylase varied under an induction mechanism, and a repression mechanism which changed the rate of synthesis of enzyme in induced over non-induced cultures. In this organism, substantial synthesis of glucoamylase could be induced by maltose, cello-dextrin, cellulose or cellulose- and hemicellulose-containing substrates which showed low volumetric substrate uptake rate. During growth of A. niger on wheat bran, maximum volumetric productivity (Qp) of glucoamylase was 274 IU l−1 h−1 and is significantly higher than the values reported for some other potent fungi. The addition of actinomycin D (a repressor of transcription) and cycloheximide, (a repressor of translation) completely repressed glucoamylase biosynthesis, suggested that the regulation of glucoamylase synthesis in this organism occurs at both transcriptional and translational level. Thermodynamic studies revealed that the culture exerted protection against thermal inactivation when exposed to different fermentation temperatures.


Aspergillus niger glucoamylase induction regulation repression 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiba, S., Humphrey, A.E., Millis, N.F. 1973Biochemical Engineering2Academic PressNew York92127Google Scholar
  2. Al-Asheh, S., Duvniak, Z. 1994Characteristics of phytase produced by Aspergillus carbonarius NRC 401121 in canola mealActa Biotechnologica14223237Google Scholar
  3. Arni, S., Molinari, F., DelBorghi, M., Converti, A. 1999Improvement of alcohol fermentation of a corn starch hydrolysate by viscosity raising additivesStärke/Starch51218224Google Scholar
  4. Bagga, P.S., Sandhu, D.K., Sharma, S. 1989Catabolite repression of cellulase production in Aspergillus nidulansProcess Biochemistry244145Google Scholar
  5. Cha, H.I., Ghoi, S.S., Yoo, Y.J., Bentley, W.E. 1997Enhancement of production of cloned glucoamylase under conditions of low aeration from recombinant yeast using a SUC 2 promoterProcess Biochemistry32679684Google Scholar
  6. Chiquetto, M.L., Facciotti, M.C.R., Kilikian, B.V., Schmidell, W. 1992Influence of carbon and nitrogen sources on glucoamylase production by Aspergillus in batch processBiotechnology Letters14465470Google Scholar
  7. Converti, A., Del Borghi, M. 1997Simultaneous effects of immobilization and substrate protection on the thermodynamics of glucose isomerase activity and inactivationEnzyme and microbiol Technology21511517Google Scholar
  8. Devchand, M., Gwynne, D. I991Expression of heterologous proteins in AspergillusJournal of Biotechnology17310Google Scholar
  9. Duenas, R., Tengerdy, R., Gutierrez-Corea, M. 1995Cellulase production by mixed fungi in solid-substrate fermentation of bagasseWorld Journal of Microbiology and Biotechnology11333337Google Scholar
  10. Fowler, T. 1993Deletion of the Trichoderma reesei β-glucosidase gene, bglIEsen, A. eds. β-Glucosidase, Biochemistry, and Molecular BiologyAmerican Chemical SocietyWashington, DC, USA5665ISBN 0-84122697-0Google Scholar
  11. Fowler, T., Berka, R.M., Ward, M. 1990Regulation of the glaA gene of Aspergillus nigerCurrent Genetics18537545Google Scholar
  12. Furuta, H., Arai, T., Hama, H., Shiomi, N., Kondo, A., Fukuda, H. 1997Production of glucoamylase by passively immobilized cells of a flocculant yeast, Saccharomyces diasticusJournal of Fermentation and Bioengineering84169171Google Scholar
  13. Hrmova, M., Petrakova, E., Biely, P. 1991Induction of cellulose- and xylan- degrading enzyme systems in Aspergillus terreus by homo- and hetero-disaccharides composed of glucose and xyloseJournal of General Microbiology137541547Google Scholar
  14. Iqbal, Z., Rashid, M.H., Jabbaar, A., Malana, M.A., Khalid, A.M., Rajoka, M.I. 2003Kinetics of enhanced thermostability of extracellular glucoamylase from Arachniotus spBiotechnology Letters2516671670Google Scholar
  15. Latif, F., Rajoka, M.I., Malik, K.A. 1994Saccharification of Leptochloa fusca (kallar grass straw) by thermostable cellulasesBioresource Technology50107112Google Scholar
  16. Li, X.-L., Ljungdahl, L.G. 1994Cloning, sequencing and regulation of a xylanase gene 2 from the fungus Aureobasidium pullulans Y-2311-1Applied and Environmental Microbiology6031603166Google Scholar
  17. Ma, Y.J., Lin, LL., Chien, H.R., Hsu, W.H. 2000Efficient utilization of starch by a recombinant strain of Saccharomyees cerevisiae producing glucoamylase and isolamylaseApplied and Environmental Microbiology5313521357Google Scholar
  18. Magnelli, P., Forchiassin, F. 1999Regulation of the cellulase complex production by Saccobolus saccoboloides: induction and repression by carbohydratesMycologia91359364Google Scholar
  19. Mase, T., Matsumiya, Y., Mori, S., Matsuura, A. 1996Purification and characterization of a novel glucoamylase from Acremonium sp. YT-78Journal of Fermentation and Bioengineering81347350Google Scholar
  20. Metwally, M. 1998Glucoamylase production in continuous cultures of Aspergillus niger with special emphasis on growth parametersWorld Journal of Microbiology and Biotechnology14113118Google Scholar
  21. Miller, G.L. 1959Use of dinitrosalisylic acid (DNS) for determination of reducing sugarsAnalytical Chemistry31426428Google Scholar
  22. Morlino, G.B., Tizzani, L., Fleer, R., Frontali, L., Bianchi, M.M. 1999Inducible amplification of gene copy number and heterogonous protein production in the yeast Kluyveromyces lactisApplied and Environmental Microbiology6548084813Google Scholar
  23. Nakamura, K., Kitamura, K. 1988Cellulases of Cellulomonas udaMethods in Enzymology160211216Google Scholar
  24. Nigam, P., Singh, D. 1995Enzyme and microbial systems involved in starch processingEnzyme and Microbial Technology17770778Google Scholar
  25. Nochure, S.V., Roberts, M.F., Demain, A.L. 1993True cellulase production by Clostridium thermocellum grown on different carbon sourcesBiotechnology Letters15641646Google Scholar
  26. Papagianni, M., Joshi, N., Moo-Young, M. 2002Comparative studies on extracellular protease secretion and glucoamylase production by free and immobilized Aspergillus niger culturesJournal of Industrial Microbiology and Biotechnology5259263Google Scholar
  27. Peixoto, S.C., Jorge, J.A., Terenzi, H.F., Polizeli Mde, L. 2003Rhizopus microsporus var rhizopodiformis: a thermotolerant fungus with potential for production of thermostable amylasesInternational Microbiology4269273Google Scholar
  28. Pirt, S.J. 1975Principles of Microbe and Cell CultivationOxfordBlackwell ScientificISBN 0-63208150-3Google Scholar
  29. Rajoka, M.I. 1990Bioconversion of lignocellulosic materials raised from saline lands for production of biofuels using Cellulomonas species (as cellulolytic organisms)University of the PunjabLahore, PakistanPhD thesisGoogle Scholar
  30. Rajoka, M.I., Bashir, A., Hussain, M.-R.A., Malik, K.A. 1998aMutagenesis of Cellulomonas biazotea for improved production of cellulasesFolia Microbiologica431522Google Scholar
  31. Rajoka, M.I., Bashir, A., Hussain, M.-R.A., Parvez, S., Ghauri, M.T., Malik, K.A. 1998bCloning and expression of bgl genes in Escherichia coli and Saccharomyces cerevisiae using shuttle vector pYES2.0Folia Microbiologica43129135Google Scholar
  32. Rajoka, M.I., Khan, S., Shahid, R. 2003Kinetics and regulation of the production of β-galactosidase from Kluyveromyces marxianus grown on different substratesFood Technology and Biotechnology41315320Google Scholar
  33. Rajoka, M.I., Malik, K.A. 1997Enhanced production of cellulases by Cellulomonas strains grown on different cellulosic residuesFolia Microbiologica425964Google Scholar
  34. Ramadas, M., Holst, O., Mattiasson, B. 1996Production of amyloglucosidase by Aspergillus niger under different cultivation regimensWorld Journal of Microbiology and Biotechnology12267271Google Scholar
  35. Siddiqui, K.S., Azar, M.J., Rashid, M.H., Rajoka, M.I. 1997Purification and the effect of Mn++ on the activity of carboxymethyl cellulase from Aspergillus niger and Cellulomonas biazoteaFolia Microbiologica42303311Google Scholar
  36. Stamford, T.L., Stamfor, N.P., Coelho, L.C., Araujo, J.M. 2002Production and characterization of a thermostable glucoamylase from Streptosporangium sp. endophyte of maize leavesBioresource Technology83105109Google Scholar
  37. Suto, M., Tomita, F. 2001Induction and catabolite repression mechanisms of cellulase in fungiJournal of Bioscience and Bioengineering92305311Google Scholar
  38. Thirumale, S., Rani, D.S., Nand, K. 2001Control of cellulase formation by trehalose in Clostridium papyrosolvens CFR-703Process Biochemistry37241245Google Scholar
  39. Wyk, J.P.H. 2001Biotechnology and utilization of biowaste as a resource for bioproduct developmentTrends in Biotechnology19172177Google Scholar
  40. Verdoes, J.C., Diepeningen, A.D., Punt, P.J., Debets, A.J.M., Stouthamer, A.H., Hondel, C.A.M.J.J. 1994Evolution of molecular and genetic approaches to generate glucoamylase overproducing strains of Aspergillus nigerJournal of Biotechnology43195205Google Scholar

Copyright information

© Kluwer Academic Publishers 2005

Authors and Affiliations

  1. 1.National Institute for Biotechnology and Genetic Engineering (NIBGE)FaisalabadPakistan

Personalised recommendations