Stabilization of a truncated Bacillus sp. strain TS-23 α-amylase by replacing histidine-436 with aspartate

  • Huei-Fen Lo
  • Ya-Hui Chen
  • Nai-Wan Hsiao
  • Hsiang-Ling Chen
  • Hui-Yu Hu
  • Wen-Hwei Hsu
  • Long-Liu Lin
Article

Summary

Histidine-436 of a truncated Bacillus sp. strain TS-23 α-amylase (His6-tagged ΔNC) has been known to be responsible for thermostability of the enzyme. To understand further the structural role of this residue, site-directed mutagenesis was conducted to replace His-436 of His6-tagged ΔNC with aspartate, lysine, tyrosine or threonine. Starch-plate assay showed that all Escherichia coli M15 transformants conferring the mutated amylase genes retained the amylolytic activity. The over-expressed proteins have been purified to near homogeneity by nickel-chelate chromatography and the molecular mass of the purified enzymes was approximately 54 kDa. The specific activity for H436T was decreased by more than 56%, while H436D, H436K, and H436Y showed a higher activity to that of the wild-type enzyme. Although the mutations did not lead to a significant change in the Km value, more than 66% increase in the value of catalytic efficiency (kcat/Km) was observed in H436D, H436K, and H436Y. At 70 °C, H436D exhibited an increased half-life with respect to the wild-type enzyme.

Keywords

Bacillus sp. strain TS-23 α-amylase site-directed mutagenesis histidine thermostability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M.J., Coutinho, P.M., Ford, C.F. 1998Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining mutationsProtein Engineering11783788CrossRefPubMedGoogle Scholar
  2. Auerbach, G., Ostendorp, R., Prade, L., Korndorfer, I., Dams, T., Huber, R., Jaenicke, R. 1998Lactate dehydrogenase from the hyperthermophilic bacterium Thermotoga maritima: the crystal structure at 2.1 Å resolution reveals strategies for intrinsic protein stabilizationStructure6769781CrossRefPubMedGoogle Scholar
  3. Chang, C.T., Lo, H.F., Chi, M.C., Yao, C.Y., Hsu, W.H., Lin, L.L. 2003Identification of essential histidine residues in a recombinant α-amylase of thermophilic and alkaliphilic Bacillus sp. strain TS-23Extremophiles7505509CrossRefPubMedGoogle Scholar
  4. Declerck, N., Joyet, P., Gaillardin, C., Masson, J.M. 1990Use of amber suppressors to investigate the thermostability of Bacillus licheniformis α-amylase: amino acid replacement at 6 histidine residues reveal a critical position at His-133Journal of Biological Chemistry2651548115488PubMedGoogle Scholar
  5. Declerck, N., Machius, M., Wiegand, G., Huber, R., Gaillardin, C. 2000Probing structural determinants specifying high thermostability in Bacillus licheniformis α-amylaseJournal of Molecular Biology30110411057CrossRefPubMedGoogle Scholar
  6. Demirjian, D.C., Moris-Varas, F., Cassidy, C.S. 2001Enzymes for extremophilesCurrent Opinion in Chemical Biology5144151CrossRefPubMedGoogle Scholar
  7. Guzman-Maldonado, H., Paredes-Lopez, O. 1995Amylolytic enzymes and products derived from starch: a reviewCRC Critical Reviews in Food Science and Nutrition35373403PubMedGoogle Scholar
  8. Hashimoto, H., Inoue, T., Nishioka, M., Fujiwara, S., Takagi, M., Imanaka, T., Kai, Y. 1999Hyperthermostable protein structure maintained by intra and inter-helix ion-pairs in archaeal O6-methylguanine-DNA methyltransferaseJournal of Molecular Biology292707716CrossRefPubMedGoogle Scholar
  9. Henrissat, B., Bairoch, A. 1996Updating the sequence-based classification of glycosyl hydrolasesBiochemical Journal316695696PubMedGoogle Scholar
  10. Henrissat, B., Davies, G. 1997Structural and sequence-based classification of glycosyl hydrolasesCurrent Opinion in Structural Biology7637644CrossRefPubMedGoogle Scholar
  11. Hsiao N.W., Lu P.Y., Wang T.S., Lai S.M., Cheng C.S., Hwang J.K., Lyu P.C., (2004) Prediction of melting temperature directly from protein sequences. In Abstract of the 9th Symposium on Recent Advances in Biophysics held at Taipei, Taiwan, PC02.Google Scholar
  12. Ishikawa, K., Matsui, I., Honda, K., Nakatami, H. 1992Multi-functional roles of a histidine residue in human pancreatic α-amylaseBiochemical and Biophysical Research Communications183286291CrossRefPubMedGoogle Scholar
  13. Ishikawa, K., Matsui, I., Kobayashi, S., Nakatani, H., Honda, K. 1993Substrate recognition at the binding site in mammalian pancreatic α-amylaseBiochemistry3262596265CrossRefPubMedGoogle Scholar
  14. Ito, S., Kobayashi, T., Ara, K., Ozaki, K., Kawai, S., Hatada, Y. 1998Alkaline detergent enzymes from alkaliphiles: enzymatic properties, genetic, and structuresExtremophiles2185190CrossRefPubMedGoogle Scholar
  15. Janeček, S. 1997α-Amylase family: molecular biology and evolutionProgress in Biophysics and Molecular Biology676797CrossRefPubMedGoogle Scholar
  16. Janeček, S., Sevèik, J. 1999The evolution of starch-binding domainFEBS Letters456119125CrossRefPubMedGoogle Scholar
  17. Knegtel, R.M., Wind, R.D., Rozeboom, H.J., Kalk, K.H., Buitelaar, R.M., Dijkhuizen, L., Dijkstra, B.W. 1996Crystal structure at 2.3 Å resolution and revised nucleotide sequence of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacterium thermosulfurigenes EM1Journal of Molecular Biology256611622CrossRefPubMedGoogle Scholar
  18. Kuriki, T., Imanaka, T. 1999The concept of the α-amylase family: structural similarity and common catalytic mechanismJournal of Bioscience and Bioengineering87557565CrossRefGoogle Scholar
  19. Leemhuis, H., Rozeboom, H.J., Dijkstra, B.W., Dijkhuizen, L. 2004Improved thermostability of Bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridgeProteins54128134CrossRefPubMedGoogle Scholar
  20. Lin, L.L., Hsu, W.H., Chu, W.S. 1997A gene encoding for an α-amylase from thermophilic Bacillus sp. strain TS-23 and its expression in Escherichia coliJournal of Applied Microbiology82325334CrossRefPubMedGoogle Scholar
  21. Lin, L.L., Tsau, M.R., Chu, W.S. 1994General characteristics of thermostable amylopullulanases and amylases from alkaliphilic Bacillus sp. TS-23Applied Microbiology and Biotechnology425156CrossRefGoogle Scholar
  22. Lo, H.F., Lin, L.L., Chen, H.L., Hsu, W.H., Chang, C.T. 2001Enzymic properties of a SDS-resistant Bacillus sp. TS-23 α-amylase produced by recombinant Escherichia coliProcess Biochemistry36743750CrossRefGoogle Scholar
  23. Lo, H.F., Lin, L.L., Li, C.C., Hsu, W.H., Chang, C.T. 2001The N-terminal signal sequence and the last 98 amino acids are not essential for the secretion of Bacillus sp. TS-23 α-amylase in Escherichia coliCurrent Microbiology43170175CrossRefPubMedGoogle Scholar
  24. Matsuura, A., Kusunok, M., Harada, W., Kakudo, M. 1984Structure and possible catalytic residues of Taka-amylaseJournal of Biochemistry (Tokyo)95697702Google Scholar
  25. Matthews, B.W. 1993Structural and genetic analysis of protein stabilityAnnual Reviews of Biochemistry62139160CrossRefGoogle Scholar
  26. Matthews, B.W. 1995Studies on protein stability with T4 lysozymeAdvances in Protein Chemistry46249278PubMedGoogle Scholar
  27. Nakamura, A., Haga, K., Yamane, K. 1993Three histidine residues in the active center of cyclodextrin gluconotransferase from alkalophilic Bacillus sp. 1011: effects of replacement on pH dependence and transition-state stabilizationBiochemistry3266246631CrossRefPubMedGoogle Scholar
  28. Niehaus, F., Bertoldo, C., Kahler, M., Antranikian, G. 1999Extremophiles as a source of novel enzymes for industrial applicationApplied Microbiology and Biotechnology51711729CrossRefPubMedGoogle Scholar
  29. Nielsen, J.E., Borchert, T.V. 2000Protein Engineering of bacterial α-amylasesBiochimica et Biophysica Acta1543253274PubMedGoogle Scholar
  30. Perry, L.J., Wetzel, R. 1984Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivationScience226555557PubMedGoogle Scholar
  31. Sakasegawa, S., Takehara, H., Yoshioka, T., Takahashi, M., Kagimoto, Y., Misaki, H., Sakuraba, H., Ohshima, T. 2001Increasing the thermostability of Flavobacterium meningosepticum glycerol kinase by changing Ser329 to Asp in the subunit interface regionProtein Engineering14663667PubMedGoogle Scholar
  32. Sakasegawa, S., Takehara, H., Yoshioka, I., Misaki, H., Sakuraba, H., Ohshima, T. 2002Stabilization of Flavobacterium meningosepticum glycerol kinase by introduction of a hydrogen bondBioscience, Biotechnology and Biochemistry6613741377Google Scholar
  33. Sambrook J., Fritsch E.F., Maniatis T., (1989) Molecular Cloning: A Laboratory Manual. pp. 17.2–17.44. New York: Cold Spring Harbor Laboratory Press. ISSN 0-87969-309-6.Google Scholar
  34. Sanz-Aparicio, J., Hermoso, J.A., Martinez-Ripoll, M., Gonzalez, B., Lopez-Camacho, C., Polaina, J. 1998Structural basis of increased resistance to thermal denaturation induced by single amino acid substitution in the sequence of β-glucosidase A from Bacillus polymyxaProteins33567576PubMedGoogle Scholar
  35. Sunna, A., Moracci, M., Rossi, M., Antranikian, G. 1997Glycosyl hydrolases from hyperthermophilesExtremophiles1213PubMedGoogle Scholar
  36. Tahirov, T.H., Oki, H., Tsukihara, T., Ogasahara, K., Yutani, K., Ogata, K., Izu, Y., Tsunasawa, S., Kato, I. 1998Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosusJournal of Molecular Biology284101124PubMedGoogle Scholar
  37. Takase, K. 1994Site-directed mutagenesis reveals critical importance of the catalytic site in the binding of α-amylase by wheat proteinaceous inhibitorBiochemistry3379257930PubMedGoogle Scholar
  38. Tseng, C.C., Miyamoto, M., Ramalingam, K.C., Hemavathy, K.C., Levine, M.J., Ramasubbu, N. 1999The roles of histidine residues at the starch-binding site in streptococcal-binding activities of human salivary amylaseArchives of Oral Biology44119127PubMedGoogle Scholar
  39. Vieille, C., Burdette, D.S., Zeikus, J.G. 1996ThermozymesBiotechnology Annual Review2183PubMedGoogle Scholar
  40. Vieille, C., Zeikus, G.J. 2001Hyperthermophilic enzymes: sources, use, and molecular mechanism for thermostabilityMicrobiology and Molecular Biology Reviews65143PubMedGoogle Scholar
  41. Vihinen, M., Mäntsälä, P. 1989Microbial amylolytic enzymesCRC Critical Reviews in Biochemistry and Molecular Biology24329418PubMedGoogle Scholar
  42. Wallace, A.C., Laskowski, R.A., Thornton, J.M. 1995LIGPLOT: a program to generate schematic diagrams of protein–ligand interactionsProtein Engineering8127134PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Huei-Fen Lo
    • 1
  • Ya-Hui Chen
    • 1
  • Nai-Wan Hsiao
    • 2
  • Hsiang-Ling Chen
    • 1
  • Hui-Yu Hu
    • 1
  • Wen-Hwei Hsu
    • 3
  • Long-Liu Lin
    • 4
  1. 1.Department of Food and NutritionHungkuang UniversityTaiwan
  2. 2.Graduate Institute of BioinformaticsTaichung Healthcare and Management UniversityTaiwan
  3. 3.Institute of Molecular BiologyNational Chung Hsing UniversityTaiwan
  4. 4.Department of Applied ChemistryNational Chiayi UniversityChiayiTaiwan

Personalised recommendations