Advertisement

Modeling tidal hydrodynamic changes induced by the opening of an artificial inlet within a subtropical mangrove dominated estuary

  • David Serrano
  • Francisco Flores-Verdugo
  • Evlin Ramírez-Félix
  • John M. Kovacs
  • Francisco Flores-de-SantiagoEmail author
Original Paper

Abstract

The mangrove-estuarine system of Marismas Nacionales, Mexico is considered the most extensive wetland complex of the eastern Pacific coast. Originally, this large wetland was connected to the ocean solely through a natural inlet (Teacapán). However, in the early 1970s, it was decided that an artificial inlet (Cuautla Canal) will provide a second direct connection to the ocean that could help enhance local economic development. Unfortunately, it is believed that hydrological modification resulting from this inlet changed the hydrodynamics and thus massive loss of mangroves. Hence, the purpose of this investigation was to assess the tidal hydrodynamics before and after the canal’s construction and thus understand the potential negative impacts of such unsupervised coastal projects. Specifically, sea level elevation and tidal circulation velocities were simulated during flood and ebb currents using nonlinear numerical models for both inlets. Results indicated that sea level elevation and salinity increased from 2 to 35 cm and 0.5 to 35 PSU in the Agua Brava lagoon, respectively. Additionally, there was an overall increase of 0.6 m/s regarding the tidal current velocities, and thus it is probable that the Cuautla Canal contributed to the deterioration of the once Laguncularia racemosa dominated forests, which is slowly being replaced by Avicennia germinans, Rhizophora mangle, and extensive hypersaline floodplains. Consequently, such modeling could help in mitigating the impacts of future coastal developments in Mexico or elsewhere by helping in the prediction of the possible influence of tidal hydrodynamic changes on the subtropical coastal vegetation.

Keywords

Nonlinear hydrodynamic models Mapping current strength Subtropical coastal lagoon Mangrove degradation 

Notes

Acknowledgements

This study is partially supported by the Instituto de Ciencias del Mar y Limnología under Grant Number 622 and the Consejo Nacional de Ciencia y Tecnología under Grant Number PCECBNA-022068.

References

  1. Agraz-Hernández CM, García-Zaragoza C, Iriarte-Vivar S, Flores-Verdugo FJ, Moreno-Casasola P (2011) Forest structure, productivity and species phenology of mangroves in the La Mancha lagoon in the Atlantic coast of Mexico. Wetl Ecol Manag 19:273–293CrossRefGoogle Scholar
  2. Amezcua F, Ramírez M, Flores-Verdugo F (2019) Classification and comparison of five estuaries in the southeast Gulf of California based on environmental variables and fish assemblages. Bull Mar Sci 95(2):139–159CrossRefGoogle Scholar
  3. Aucan J, Ridd PV (2000) Tidal asymmetry in creeks surrounded by saltflats and mangroves with small swamp slopes. Wetl Ecol Manag 8:223–231CrossRefGoogle Scholar
  4. Barrios-Piña H, Ramírez-León H, Cuevas-Otero A, Torres-Bejarano F, Ponce-Palafox JT (2016) Numerical modeling of hydrodynamics in the Agua Brava lagoon, located in Nayarit, Mexico. In: Klapp J, Sigalotti LDG, Medina A, López A, Ruiz-Chavarría G (eds) Recent advances in fluid dynamics with environmental applications. Springer, Basel, pp 167–180CrossRefGoogle Scholar
  5. Bishop MJ, Mayer-Pinto M, Airoldi L, Firth LB, Morris RL, Loke LHL, Hawkins SJ, Naylor LA, Coleman RA, Chee SY, Dafforn KA (2017) Effects of ocean sprawl on ecological connectivity: impacts and solutions. J Exp Mar Biol Ecol 492:7–30CrossRefGoogle Scholar
  6. Blanco y Correa M, Flores-Verdugo F, Ortiz-Pérez MA, de-la-Lanza-Espino G, López-Portillo J, Valdéz-Hernández I, Agraz-Hernández C, Czitrom S, Rivera-Arriaga E, Orozco A, Jiménez-Ramón GA, Benítez-Pardo D, Gómez-Gurrola J, González-Díaz AA, Soria-Barreto M, Otis-Kruse G, Jacobo-Sapién EA, López-Cano G, Blanco-Fuentes H, Blanco-Fuentes R (2012) Diagnóstico funcional de marismas nacionales: Informe final. Universidad Autónoma de Nayarit, Comisión Nacional Forestal, TepicGoogle Scholar
  7. Bouillon S (2011) Carbon cycle: storage beneath mangroves. Nat Geosci 4:282–283CrossRefGoogle Scholar
  8. Bryce S, Larcombe P, Ridd PV (2003) Hydrodynamic and geomorphological controls on suspended sediment transport in mangrove creek systems, a case study: Cocoa Creek, Townsville, Australia. Estuar Coast Shelf Sci 56:415–431CrossRefGoogle Scholar
  9. Burt JA, Killilea ME, Ciprut S (2019) Coastal urbanization and environmental change: opportunities for collaborative education across a global network university. Reg Stud Mar Sci 26:100501CrossRefGoogle Scholar
  10. Carbajal N, Backhaus JO (1998) Simulation of tides, residual flow and energy budget in the Gulf of California. Oceanol Act 21:429–446CrossRefGoogle Scholar
  11. Curray JR, Emmel FJ, Crampton PJS (1969) Holocene history of a strand plain, lagoonal coast, Nayarit, Mexico. In: Ayala-Castañares A, Phleger FB (eds) Coastal lagoons international simposia proceedings. UNAM-UNESCO, MexicoGoogle Scholar
  12. Duke NC, Kovacs JM, Griffiths AD, Preece L, Hill DJE, van Oosterzee P, Mackenzie J, Morning HS, Burrows D (2017) Large-scale dieback of mangroves in Australia’s Gulf of Carpentaria: a severe ecosystem response, coincidental with an unusual extreme weather event. Mar Freshw Res 68:1816–1829CrossRefGoogle Scholar
  13. Flores-de-Santiago F, Serrano D, Flores-Verdugo F, Monroy-Torres M (2017) Application of a simple and effective method for mangrove afforestation in semiarid regions combining nonlinear models and constructed platforms. Ecol Eng 103:244–255CrossRefGoogle Scholar
  14. Flores-Verdugo F, González-Farías F, Ramírez-Flores O (1990) Mangrove ecology, aquatic primary productivity, and fish community dynamics in the Teacapán-Agua Brava lagoon-estuarine system (Mexican Pacific). Estuaries 13(2):219–230CrossRefGoogle Scholar
  15. Flores-Verdugo F, González-Farías F, Blanco-Correa M, Nuñez-Pastén A (1997) The Teacapán-Agua Brava-Marismas Nacionales mangrove ecosystem on the Pacific coast of Mexico. In: Kjerfve D-L, Diop L (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, pp 5–46Google Scholar
  16. Flores-Verdugo F, Amezcua F, Kovacs JM, Serrano D, Blanco-Correa M (2014) Changes in the hydrological regime of coastal lagoons affect mangroves and small scale fisheries: the case of the mangrove-estuarine complex of Marismas Nacionales (Pacific coast of Mexico). In: Amezcua F, Bellgraph B (eds) Fisheries management of Mexican and Central American estuaries. Springer, Basel, pp 81–91CrossRefGoogle Scholar
  17. Furukawa K, Wolanski E (1996) Sedimentation in mangrove forests. Mangroves Salt Marshes 1(1):3–10CrossRefGoogle Scholar
  18. Guo X, Futamura A, Takeoka H (2004) Residual currents in a semi-enclosed bay of the Seto Inland Sea. Jpn J Geophys Res 109:C12008CrossRefGoogle Scholar
  19. Gutierrez-Estrada M, Galaviz-Solis A, Castro-del-Rio A (1986) Modificaciones morfológicas del canal artificial Canal de Cuautla. In: Flores-Verdugo F (ed) Ecologia de los manglares y perfil de comunidades en los sistemas lagunares de Agua Brava y Marismas Nacionales. Nayarit CONACYT, Tepic, p 350Google Scholar
  20. Horstman EM, Dohmen-Janssen CM, Bouma TJ, Hulscher SJMH (2015) Tidal-scale flow routing and sedimentation in mangrove forests: combining field data and numerical modelling. Geomorphology 228:244–262CrossRefGoogle Scholar
  21. INEGI (2016) Anuario estadístico y geográfico de Nayarit 2016. Instituto Nacional de Estadística y Geografía, Ciudad de MéxicoGoogle Scholar
  22. Kovacs JM (2000) Perceptions of environmental change in a tropical coastal wetland. Land Degrad Dev 11:209–220CrossRefGoogle Scholar
  23. Kovacs JM, Wang J, Blanco y Correa M (2001) Mapping mangrove disturbances using multi-date Landsat TM imagery. Environ Manag 27:763–776CrossRefGoogle Scholar
  24. Kovacs JM, King JML, Flores-de-Santiago F, Flores-Verdugo F (2009) Evaluating the condition of a mangrove forest of the Mexican Pacific based on an estimated leaf area index mapping approach. Environ Monit Assess 157:137–149PubMedCrossRefGoogle Scholar
  25. Kovacs JM, Liu Y, Zhang C, Flores-Verdugo F, Flores-de-Santiago F (2011) A field based statistical approach for validating a remotely sensed mangrove forest classification scheme. Wetl Ecol Manag 19:409–421CrossRefGoogle Scholar
  26. Lithgow D, De-La-Lanza G, Silva R (2019) Ecosystem-based management strategies to improve aquaculture in developing countries: case study of Marismas Nacionales. Ecol Eng 130:296–305CrossRefGoogle Scholar
  27. Mahoney PC, Bishop MJ (2017) Assessing risk of estuarine ecosystem collapse. Ocean Coast Manag 140:46–58CrossRefGoogle Scholar
  28. Mazda Y, Wolanski E (2009) Hydrodynamics and modeling of water flow in mangrove areas. In: Perillo GME, Wolanski E, Cahoon DR, Brinson MM (eds) Coastal wetlands: An integrated ecosystem approach. Elsevier, Amsterdam, pp 231–261Google Scholar
  29. Mazda Y, Wolanski E, King B, Sase A, Ohtsuka D, Magi M (1997) Drag force due to vegetation in mangrove swamps. Mangroves Salt Marshes 1:193–199CrossRefGoogle Scholar
  30. Mazda Y, Wolanski E, Ridd PV (2007) The role of physical processes in mangrove environments: manual for the preservation and concervation of mangrove ecosystems. Terrapub, TokyoGoogle Scholar
  31. Mukherjee N, Sutherland WJ, Khan MNI, Berger U, Schmitz N, Dahdouh-Guebas F, Koedam N (2014) Using expert knowledge and modeling to define mangrove composition, functioning, and threats and estimate timeframe for recovery. Ecol Evol 4(11):2247–2262PubMedPubMedCentralGoogle Scholar
  32. Norihisa I (1983) What is tide-induced residual current? J Phys Oceanogr 13(7):1307–1317CrossRefGoogle Scholar
  33. Nuñez-Pasten A (1973) Hidrologia del sistema Teacapán-Agua Brava, en la planicie costera de los estados de Sinaloa y Nayarit, Mexico. Dissertation, Universidad Autonoma del Estado de MorelosGoogle Scholar
  34. Ochoa-Gómez JG, Lluch-Cota SE, Rivera-Monroy VH, Lluch-Cota DB, Troyo-Diéguez E, Oechel W, Serviere-Zaragoza E (2019) Mangrove wetland productivity and carbon stocks in an arid zone of the Gulf of California (La Paz, Mexico). For Ecol Manag 442:135–147CrossRefGoogle Scholar
  35. Perkins MJ, Ng TPT, Dudgeon D, Bonebrake TC, Meung KMY (2015) Conserving intertidal habitats: what is the potential of ecological engineering to mitigate impacts of coastal structures? Estuar Coast Shelf Sci 167:504–515CrossRefGoogle Scholar
  36. Polidoro BA, Carpenter KE, Collins L, Duke NC, Ellison AM, Ellison JC, Farnsworth EJ, Fernando ES, Kathiresan K, Koedam NE, Livingstone SR, Miyagi T, Moore GE, Nam VN, Ong JE, Primavera JH, Salmo SG III, Sanciangco JC, Sukardjo S, Wang Y, Yong JWH (2010) The loss of species: mangrove extinction risk and geographic areas of global concern. PLoS ONE 5(4):e10095PubMedPubMedCentralCrossRefGoogle Scholar
  37. Pond S, Pickard GL (1983) Introductory dynamical oceanography. Pergamon Press, OxfordGoogle Scholar
  38. Pool DJ, Snedaker SC, Lugo AE (1977) Structure of mangrove forests in Florida, Puerto Rico, Mexico, and Costa Rica. Biotropica 9(3):195–2012CrossRefGoogle Scholar
  39. Ramírez-Flores OM, Flores-Verdugo F, Day JW Jr, Morales -Acosta G (1986) Aporte de materia orgánica por los manglares en Agua Brava, Nayarit. In: Flores-Verdugo F (ed) Ecología de los manglares y perfil de comunidades en los sistemas lagunares de Agua Brava y Marismas Nacionales. Nayarit CONACYT, Tepic, p 350Google Scholar
  40. Richardson PL, Mooney K (1975) The Mediterranean outflow—a simple advection-diffusion model. J Phys Oceanogr 5:476–482CrossRefGoogle Scholar
  41. Ridd PV, Stieglitz T (2002) Dry season salinity changes in arid estuaries fringed by mangroves and saltflats. Estuar Coast Shelf Sci 54:1039–1049CrossRefGoogle Scholar
  42. Rubio-Cisneros NT, Aburto-Oropeza O, Jackson J, Ezcurra E (2017) Coastal exploitation throughout Marismas Nacionales wetlands in Northwest Mexico. Trop Conserv Sci 10:1–26Google Scholar
  43. Saenger P (2002) Mangrove ecology, silviculture and conservation. Kluwer, DordrechtCrossRefGoogle Scholar
  44. Sandilyan S, Kathiresan K (2015) Mangroves as bioshield: an undisputable fact. Ocean Coast Manag 103:94–96CrossRefGoogle Scholar
  45. Schwiderski EW (1980) Ocean tides, part I: global ocean tidal equation. Mar Geod 3:161–217CrossRefGoogle Scholar
  46. Seenath A (2015) Modelling coastal flood vulnerability: does spatially-distributed friction improve the prediction of flood extent? Appl Geogr 64:97–107CrossRefGoogle Scholar
  47. Serrano D, Filonov A, Tereshchenko I (2002) Dynamic response to valley breeze circulation in Santa Maria del Oro, a Volcanic Lake in Mexico. Geophys Res Lett 29(13):1649CrossRefGoogle Scholar
  48. Serrano D, Ramírez-Félix E, Valle-Levinson A (2013) Tidal hydrodynamics in a two-inlet coastal lagoon in the Gulf of California. Cont Shelf Res 63:1–12CrossRefGoogle Scholar
  49. Sierra-Correa PC, Cantera-Kintz JR (2015) Ecosystem-based adaptation for improving coastal planning for sea-level rise: a systematic review for mangrove coasts. Mar Policy 51:385–393CrossRefGoogle Scholar
  50. Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrere L, Cheng Y, Chinn DS, Dushaw BD, Egbert GD, Erofeeva SY, Fok HS, Green JAM, Griffiths S, King MA, Lapin V, Lemoine FG, Luthcke SB, Lyard F, Morison J, Muller M, Padman L, Richman JG, Shriver JF, Shum CK, Taguchi E, Yi Y (2014) Accuracy assessment of global barotropic ocean tide models. Rev Geophys 52:243–282CrossRefGoogle Scholar
  51. Tomlinson PB (1994) The botany of mangroves. Cambridge University Press, CambridgeGoogle Scholar
  52. UNAM (1994) Tabla de predicción de mareas. Puertos del Pacífico, Instituto de Geofísica, MéxicoGoogle Scholar
  53. Valderrama-Landeros L, Flores-de-Santiago F, Kovacs JM, Flores-Verdugo F (2018) An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme. Environ Monit Assess 190:23CrossRefGoogle Scholar
  54. Veldkamp A, Baartman JEM, Coulthard TJ, Maddy D, Schoorl JM, Storms JEA, Temme AJAM, van Balen R, Can De Wiel MJ, van Gorp W, Viveen W, Westaway R, Whittaker AC (2017) Two decades of numerical modelling to understand long term fluvial archives: advances and future perspectives. Quat Sci Rev 166:177–187CrossRefGoogle Scholar
  55. Walters BB, Rönnbäck P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89:220–236CrossRefGoogle Scholar
  56. Wattayakorn G, Wolanski E, Kjerfve B (1990) Mising, trapping and outwelling in the Klong Ngao mangrove swamp, Thailand. Estuar Coast Shelf Sci 31:667–688CrossRefGoogle Scholar
  57. Wolanski E, Jones M, Bunt JS (1980) Hydrodynamics of a tidal creek-mangrove swamp system. Aust J Mar Freshw Res 31:431–450CrossRefGoogle Scholar
  58. Wolanski E, Mazda Y, Furukawa K, Ridd P, Kitheka J, Spagnol S, Stieglitz T (2001) Water circulation in mangroves, and its implications for biodiversity. In: Wolanski E (ed) Oceanographic processes of coral reefs. CRC Press, Washington, pp 53–76Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • David Serrano
    • 1
  • Francisco Flores-Verdugo
    • 2
  • Evlin Ramírez-Félix
    • 3
  • John M. Kovacs
    • 4
  • Francisco Flores-de-Santiago
    • 5
    Email author
  1. 1.Facultad de Ciencias del Mar, Universidad Autónoma de SinaloaMazatlánMexico
  2. 2.Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de MéxicoMazatlánMexico
  3. 3.Oficina de INAPESCA MazatlánInstituto Nacional de Pesca y AcuaculturaMazatlánMexico
  4. 4.Department of GeographyNipissing UniversityNorth BayCanada
  5. 5.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoCiudad de MexicoMexico

Personalised recommendations