Wetlands Ecology and Management

, Volume 25, Issue 2, pp 211–219 | Cite as

The interaction between wetland nutrient content and plant quality controls aquatic plant decomposition

  • C. GrassetEmail author
  • L. H. Levrey
  • C. Delolme
  • F. Arthaud
  • G. Bornette
Original Paper


We conducted an in situ decomposition experiment to better understand how habitat nutrient content controls aquatic plant decomposition and, more precisely, to determine the relative importance of the wetland conditions in decomposition, and the intrinsic degradability of plant tissues. We collected the green leaves of three aquatic plant species with contrasting plant strategies from three wetlands of differing nutrient contents, and allowed them to decompose in seven wetlands along a nutrient gradient. The plant mass loss was higher for competitive and ruderal species collected in nutrient richer wetlands as well as when they were led to decompose in nutrient richer wetlands. Plant water content correlated with mass loss for the competitive and ruderal species, which may explain the increase in mass loss with increasing nutrient content in the collection wetlands. Litter decomposition rate may be enhanced by wetland eutrophication, because of both the modification of wetland decomposition conditions and by changes in plant tissue quality.


Adaptive strategies Decomposition Eutrophication Lignins Macrophytes 



This study was funded by the French Ministry of Research and the French Water Agency (Agence de l’Eau Rhône Mediterranée Corse), and was performed under the aegis of the French LTER “Zone Atelier Bassin du Rhône”.

Supplementary material

11273_2016_9510_MOESM1_ESM.docx (807 kb)
Supplementary material 1 (DOCX 806 kb)


  1. Aerts R (1996) Nutrient resorption from senescing leaves of perennials: Are there general patterns? J Ecol 84:597–608CrossRefGoogle Scholar
  2. Aerts R, de Caluwe H (1997) Nutritional and plant-mediated controls on leaf litter decomposition of carex species. Ecology 78:244–260CrossRefGoogle Scholar
  3. Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726CrossRefGoogle Scholar
  4. Bornette G, Puijalon S (2011) Response of aquatic plants to abiotic factors: a review. Aquat Sci 73:1–14CrossRefGoogle Scholar
  5. Bornette G, Henry C, Barrat M, Amoros C (1994) Theoretical habitat templets, species traits, and species richness: Aquatic macrophytes in the upper Rhone River and its floodplain. Freshw Biol 31:487–505CrossRefGoogle Scholar
  6. Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133CrossRefGoogle Scholar
  7. Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chapin FS, Matson PA, Vitousek PM (2011) Principles of terrestrial ecosystem ecology. Springer, New YorkCrossRefGoogle Scholar
  9. Cornelissen JH, van Bodegom PM, Aerts R, Callaghan TV, van Logtestijn RS, Alatalo J et al (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes. Ecol Lett 10:619–627CrossRefPubMedGoogle Scholar
  10. Cornwell WK, Cornelissen JH, Amatangelo K, Dorrepaal E, Eviner VT, Godoy O et al (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol Lett 11:1065–1071CrossRefPubMedGoogle Scholar
  11. Corstanje R, Reddy KR, Portier KM (2006) Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment. Aquat Bot 84(1):70–78CrossRefGoogle Scholar
  12. Craine JM, Froehle J, Tilman DG, Wedin DA, Chapin FS (2001) The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93:274–285CrossRefGoogle Scholar
  13. Crick JC, Grime JP (1987) Morphological plasticity and mineral nutrient capture in two herbaceous species of contrasted ecology. New Phytol 107:403–414CrossRefGoogle Scholar
  14. Curtin D, Campbell CA, Jalil A (1998) Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol Biochem 30:57–64CrossRefGoogle Scholar
  15. Davis SE, Childers DL (2007) Importance of water source in controlling leaf leaching losses in a dwarf red mangrove (Rhizophora mangle L.) wetland. Estuar Coast Shelf Sci 71:194–201CrossRefGoogle Scholar
  16. Enríquez S, Duarte CM, Sand-Jensen K (1993) Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C-N-P content. Oecologia 94:457–471CrossRefGoogle Scholar
  17. EPA (1983) Phosphorus, all forms. Method 365.1 (colorimetric, automated, ascorbic acid). In: Methods for chemical analysis of water and wastes EPA-600/4-79-020. US Environmental Protection Agency, pp 365-1.1–365-1.7Google Scholar
  18. Fierer N, Craine JM, McLauchlan K, Schimel JP (2005) Litter quality and the temperature sensitivity of decomposition. Ecology 86:320–326CrossRefGoogle Scholar
  19. Fortunel C, Garnier E, Joffre R, Kazakou E, Quested H, Grigulis K et al (2009) Leaf traits capture the effects of land use changes and climate on litter decomposability of grasslands across Europe. Ecology 90:598–611CrossRefPubMedGoogle Scholar
  20. Garnier E, Laurent G (1994) Leaf anatomy, specific mass and water-content in congeneric annual and perennial grass species. New Phytol 128:725–736CrossRefGoogle Scholar
  21. Gessner MO (1991) Differences in processing dynamics of fresh and dried leaf litter in a stream ecosystem. Freshw Biol 26:387–398CrossRefGoogle Scholar
  22. Goebel M-O, Bachmann J, Reichstein M, Janssens IA, Guggenberger G (2011) Soil water repellency and its implications for organic matter decomposition—is there a link to extreme climatic events? Glob Change Biol 17:2640–2656CrossRefGoogle Scholar
  23. Grasset C, Delolme C, Arthaud F, Bornette G (2015) Carbon allocation in aquatic plants with contrasting strategies: the role of habitat nutrient content. J Veg Sci 26:946–955CrossRefGoogle Scholar
  24. Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, New YorkGoogle Scholar
  25. Gulis V, Suberkropp K (2003) Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw Biol 48:123–134CrossRefGoogle Scholar
  26. Güsewell S (2005) Nutrient resorption of wetland graminoids is related to the type of nutrient limitation. Funct Ecol 19:344–354CrossRefGoogle Scholar
  27. Hättenschwiler S, Gasser P (2005) Soil animals alter plant litter diversity effects on decomposition. Proc Natl Acad Sci USA 102:1519–1524CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hättenschwiler S, Tiunov AV, Scheu S (2005) Biodiversity and litter decomposition in terrestrial ecosystems. Annu Rev Ecol Evol Syst 36:191–218CrossRefGoogle Scholar
  29. Hernández DL, Hobbie SE (2010) The effects of substrate composition, quantity, and diversity on microbial activity. Plant Soil 335:397–411CrossRefGoogle Scholar
  30. Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339CrossRefPubMedGoogle Scholar
  31. Hobbie SE (2000) Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian Montane forest. Ecosystems 3:484–494CrossRefGoogle Scholar
  32. Kazakou E, Vile D, Shipley B, Gallet C, Garnier E (2006) Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Funct Ecol 20:21–30CrossRefGoogle Scholar
  33. Kazakou E, Violle C, Roumet C, Pintor C, Gimenez O, Garnier E (2009) Litter quality and decomposability of species from a Mediterranean succession depend on leaf traits but not on nitrogen supply. Ann Bot 104:1151–1161CrossRefPubMedPubMedCentralGoogle Scholar
  34. Khan FA, Ansari AA (2005) Eutrophication: an ecological vision. The Botanical Review 71:449–482CrossRefGoogle Scholar
  35. Kirschbaum MUF (2006) The temperature dependence of organic-matter decomposition—still a topic of debate. Soil Biol Biochem 38:2510–2518CrossRefGoogle Scholar
  36. Kok CJ, Velde G, Landsbergen KM (1990) Production, nutrient dynamics and initial decomposition of floating leaves of Nymphaea alba L. and Nuphar lutea (L.) Sm. (Nymphaeaceae) in alkaline and acid waters. Biogeochemistry 11:235–250CrossRefGoogle Scholar
  37. Lambers H, Poorter H (1992) Inherent variation in growth-rate between higher-plants: a search for physiological causes and ecological consequences. Adv Ecol Res 23:187–261CrossRefGoogle Scholar
  38. Longhi D, Bartoli M, Viaroli P (2008) Decomposition of four macrophytes in wetland sediments: organic matter and nutrient decay and associated benthic processes. Aquat Bot 89:303–310CrossRefGoogle Scholar
  39. Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM et al (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol Lett 15:1033–1041CrossRefPubMedGoogle Scholar
  40. Murphy J, Riley JP (1962) A modified single solution method for determination of phosphates in natural water. Anal Chim Acta 27:31–36CrossRefGoogle Scholar
  41. Poorter H, De Jong R (1999) A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol 143:163–176CrossRefGoogle Scholar
  42. Qualls RG, Richardson CJ (2000) Phosphorus enrichment affects litter decomposition, immobilization, and soil microbial phosphorus in wetland mesocosms. Soil Sci Soc Am J 64:799–808CrossRefGoogle Scholar
  43. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  44. Rascio N (2002) The underwater life of secondarily aquatic plants: some problems and solutions. Crit Rev Plant Sci 21:401–427CrossRefGoogle Scholar
  45. Reddy KR, Kadlec RH, Flaig E, Gale PM (1999) Phosphorus retention in streams and wetlands: a review. Crit Rev Environ Sci Technol 29:83–146CrossRefGoogle Scholar
  46. Rejmánková E, Houdková K (2006) Wetland plant decomposition under different nutrient conditions: what is more important, litter quality or site quality? Biogeochemistry 80:245–262CrossRefGoogle Scholar
  47. Rosemond AD, Pringle CM, Ramírez A, Paul MJ, Meyer JL (2002) Landscape variation in phosphorus concentration and effects on detritus-based tropical streams. Limnol Oceanogr 47:278–289CrossRefGoogle Scholar
  48. Ryser P (1996) The importance of tissue density for growth and life span of leaves and roots: a comparison of five ecologically contrasting grasses. Funct Ecol 10:717–723CrossRefGoogle Scholar
  49. Sabaratnam S, Beattie GA (2003) Differences between Pseudomonas syringae pv. syringae B728a and Pantoea agglomerans BRT98 in epiphytic and endophytic colonization of leaves. Appl Environ Microbiol 69:1220–1228CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shipley B, Keddy PA (1988) The relationship between relative growth-rate and sensitivity to nutrient stress in 28 species of emergent macrophytes. J Ecol 76:1101–1110CrossRefGoogle Scholar
  51. Smith VH (2003) Eutrophication of freshwater and coastal marine ecosystems: a global problem. Environ Sci Pollut Res Int 10:126–139CrossRefPubMedGoogle Scholar
  52. Sollins P, Homann P, Caldwell BA (1996) Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74:65–105CrossRefGoogle Scholar
  53. Stewart BA, Davies BR (1989) The influence of different litter bag designs on the breakdown of leaf material in a small mountain stream. Hydrobiologia 183:173–177CrossRefGoogle Scholar
  54. Vernescu C, Ryser P (2009) Constraints on leaf structural traits in wetland plants. Am J Bot 96:1068–1074CrossRefPubMedGoogle Scholar
  55. Webster JR, Benfield EF (1986) Vascular plant breakdown in fresh-water ecosystems. Annu Rev Ecol Syst 17:567–594CrossRefGoogle Scholar
  56. Woodward G, Gessner MO, Giller PS, Gulis V, Hladyz S, Lecerf A et al (2012) Continental-scale effects of nutrient pollution on stream ecosystem functioning. Science 336:1438–1440CrossRefPubMedGoogle Scholar
  57. Xie YH, Yu D, Ren B (2004) Effects of nitrogen and phosphorus availability on the decomposition of aquatic plants. Hydrobiologia 80(1):29–37Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • C. Grasset
    • 1
    Email author
  • L. H. Levrey
    • 1
  • C. Delolme
    • 2
  • F. Arthaud
    • 3
    • 4
  • G. Bornette
    • 5
  1. 1.Université de Lyon, UMR CNRS 5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPEVilleurbanneFrance
  2. 2.Université de Lyon, UMR CNRS 5023 Ecologie des Hydrosystèmes Naturels et Anthropisés, Université Lyon 1, ENTPEVaulx-en-VelinFrance
  3. 3.UMR CarrtelUniversité de SavoieChambéryFrance
  4. 4.UMR Carrtel, INRAThononFrance
  5. 5.Laboratoire Chrono-EnvironnementUMR CNRS 6249, UFR des Sciences et Techniques, 16 route de Gray, Université de Franche-ComtéBesançonFrance

Personalised recommendations