Wetlands Ecology and Management

, Volume 24, Issue 1, pp 3–13 | Cite as

Indonesia’s blue carbon: a globally significant and vulnerable sink for seagrass and mangrove carbon

  • D. M. AlongiEmail author
  • D. Murdiyarso
  • J. W. Fourqurean
  • J. B. Kauffman
  • A. Hutahaean
  • S. Crooks
  • C. E. Lovelock
  • J. Howard
  • D. Herr
  • M. Fortes
  • E. Pidgeon
  • T. Wagey
Invited Feature Article


The global significance of carbon storage in Indonesia’s coastal wetlands was assessed based on published and unpublished measurements of the organic carbon content of living seagrass and mangrove biomass and soil pools. For seagrasses, median above- and below-ground biomass was 0.29 and 1.13 Mg C ha−1 respectively; the median soil pool was 118.1 Mg C ha−1. Combining plant biomass and soil, median carbon storage in an Indonesian seagrass meadow is 119.5 Mg C ha−1. Extrapolated to the estimated total seagrass area of 30,000 km2, the national storage value is 368.5 Tg C. For mangroves, median above- and below-ground biomass was 159.1 and 16.7 Mg C ha−1, respectively; the median soil pool was 774.7 Mg C ha−1. The median carbon storage in an Indonesian mangrove forest is 950.5 Mg C ha−1. Extrapolated to the total estimated mangrove area of 31,894 km2, the national storage value is 3.0 Pg C, a likely underestimate if these habitats sequester carbon at soil depths >1 m and/or sequester inorganic carbon. Together, Indonesia’s seagrasses and mangroves conservatively account for 3.4 Pg C, roughly 17 % of the world’s blue carbon reservoir. Continued degradation and destruction of these wetlands has important consequences for CO2 emissions and dissolved carbon exchange with adjacent coastal waters. We estimate that roughly 29,040 Gg CO2 (eq.) is returned annually to the atmosphere–ocean pool. This amount is equivalent to about 3.2 % of Indonesia’s annual emissions associated with forest and peat land conversion. These results highlight the urgent need for blue carbon and REDD+ projects as a means to stem the decline in wetland area and to mitigate the release of a significant fraction of the world’s coastal carbon stores.


Blue carbon Carbon sequestration Mangrove Seagrass Wetland Indonesia 



This is contribution no. 736 from the Southeast Environmental Research Center at Florida International University and is a publication of the Blue Carbon Initiative, Washington DC.


  1. Alongi DM (2009) The energetics of mangrove forests. Springer, AmsterdamGoogle Scholar
  2. Alongi DM (2014) Carbon cycling and storage in mangrove forests. Annu Rev Mar Sci 6:195–219CrossRefGoogle Scholar
  3. Alongi DM, Mukhopadhyay SK (2014) Contribution of mangroves to coastal carbon cycling in low latitude seas. Agric For Meteorol. doi: 10.1016/j.agrformet.2014.10.005 Google Scholar
  4. Alongi DM, Sasekumar A, Tirendi F, Dixon P (1998) The influence of stand age on benthic decomposition and recycling of organic matter in managed mangrove forests of Malaysia. J Exp Mar Biol Ecol 225:197–218CrossRefGoogle Scholar
  5. Alongi DM, Trott LA, Undu MC, Tirendi F (2008a) Benthic microbial metabolism in seagrass meadows along a carbonate gradient in Sulawesi, Indonesia. Aquat Microb Ecol 51:141–152. doi: 10.3354/ame01191 CrossRefGoogle Scholar
  6. Alongi DM, Trott LA, Rachmansyah TF, Mckinnon AD, Undu MC (2008b) Growth and development of mangrove forests overlying smothered coral reefs, Sulawesi and Sumatra, Indonesia. Mar Ecol Prog Ser 370:97–109CrossRefGoogle Scholar
  7. ASCNM (2009) Peta mangroves Indonesia. Pusat Survey Sumber Daya Alam Laut Badam Koordinasi Survey dan Pemetaan Nasional, CibinongGoogle Scholar
  8. Booij K, Hillebrand TJ, Nolting RF, van Ooijen J (2001) Nutrients, trace metals, and organic contaminants in Banten Bay, Indonesia. Mar Pollut Bull 42:1187–1190CrossRefPubMedGoogle Scholar
  9. Budiman A, Kartawinata K, Prowiroatmodjo S, Sapulete D (1986) Coral reef-associated mangrove communities in Indonesia. In: Soemodihardjo S (ed) Proceedings of MAB-COMAR regional workshop on coral reef ecosystems: their management practices and research/training needs. UNESCO, Jakarta, pp 12–119Google Scholar
  10. Campbell JE, Lacey EA, Decker RA, Crooks S, Fourqurean JW (2015) Carbon storage in seagrass beds of Abu Dhabi, United Arab Emirates. Estuar Coasts 38:242–251CrossRefGoogle Scholar
  11. Chmura GL, Anisfield SC, Cahoon DR, Lynch JC (2003) Global carbon sequestration in tidal, saline wetland soils. Glob Biogeochem Cycles 17:1111–1123CrossRefGoogle Scholar
  12. Christianen MJA, Govers LL, Bouma TJ, Kiswara W, Roelofs JGM, Lamers LPM, van Katwijk MM (2012) Marine megaherbivore grazing may increase seagrass tolerance to high nutrient loads. J Ecol 100:546–560CrossRefGoogle Scholar
  13. Christianen MJA, van Belzen J, Herman PMJ, van Katwijk MM, Lamers LPM, van Leent PJM, Bouma TJ (2013) Low-canopy seagrass beds still provide important coastal protection services. PLoS One 8:e62413PubMedCentralCrossRefPubMedGoogle Scholar
  14. Delongh HH, Wenno BJ, Meelis E (1995) Seagrass distribution and seasonal biomass changes in relation to dugong grazing in the Moluccas, east Indonesia. Aquat Bot 50:1–19CrossRefGoogle Scholar
  15. Donato DC, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297CrossRefGoogle Scholar
  16. Duarte CM, Kennedy H, Marbà N, Hendriks I (2013a) Assessing the capacity of seagrass meadows for carbon burial: current limitations and future strategies. Ocean Coast Manag 83:32–38CrossRefGoogle Scholar
  17. Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013b) The role of coastal plant communities for climate change mitigation and adaptation. Nat Clim Change 3:961–968CrossRefGoogle Scholar
  18. Erftemeijer PLA (1994) Differences in nutrient concentrations and resources between seagrass communities on carbonate and terrigenous sediments in south Sulawesi, Indonesia. Bull Mar Sci 54:403–419Google Scholar
  19. Erftemeijer PLA, Herman PMJ (1994) Seasonal changes in environmental variables, biomass, production, and nutrient contents in two contrasting tropical intertidal seagrass beds in South Sulawesi, Indonesia. Oecologia 99:45–59CrossRefGoogle Scholar
  20. Erftemeijer PLA, Middelburg JJ (1993) Sediment-nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi (Indonesia). Mar Ecol Prog Ser 102:187–198CrossRefGoogle Scholar
  21. FAO (2012) Statistics database.
  22. Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krausse-Jensen D, McGlathery SO (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci. doi: 10.1038/NGEO1477 Google Scholar
  23. Gacia E, Duarte CM, Marbá N, Terrados J, Kennedy H, Fortes MD, Tri NH (2003) Sediment deposition and production in SE Asia seagrass meadows. Estuar Coast Shelf Sci 56:909–919CrossRefGoogle Scholar
  24. Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, BerkeleyGoogle Scholar
  25. Howard J, Hoyt S, Isensee K, Telszewski M, Pidgeon E, eds (2014) Coastal blue carbon: methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrasses. Conservational International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature, Arlington.
  26. Kauffman JB, Heider C, Norfolk J, Payton F (2014) Carbon stocks of intact mangroves and carbon emissions arising from their conservation in the Dominican Republic. Ecol Appl 24(3):518–527CrossRefPubMedGoogle Scholar
  27. Kennedy H, Alongi DM, Karim A, Chen G, Chmura GL, Crooks S, Kairo JG, Liao B, Lin G (2014) Coastal Wetlands, Chapter 4. In: Hiraishi T, Krug T, Tanabe T, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds) (2013) Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. IPCC, Switzerland, pp 4.1–4.55.
  28. Kiswara W (1992) Community structure and biomass distribution of seagrasses at Banten Bay, West Java, Indonesia. In: Chou LM, Wilkinson CR (eds) Third ASEAN science and Technology work conference proceedings, Marine science: living coastal resources, vol 6. Department of Zoology, National University of Singapore and National Science and Technology Board, Singapore, pp 241–250Google Scholar
  29. Kusmana C (2014) Distribution and current status of mangrove forests in Indonesia. In: Faridah-Hanum I, Latiff A, Hakeem KR, Ozturk M (eds) Mangrove ecosystems of Asia. Springer, New York, pp 37–60CrossRefGoogle Scholar
  30. Lavery PS, Mateo M-Á, Serrano O, Rozalmi M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8(9):e73748. doi: 10.1371/journal.pone.0073748 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Lovelock CE, Feller IC, Ruess RW (2011) CO2 efflux from cleared mangrove peat. PLoS One 6:e21279. doi: 10.1371/journal.pone.0021279 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Macreadie PI, Baird ME, Trevathan-Tackett SM, Larkum AWD, Ralph PJ (2014) Quantifying and modelling the carbon sequestration capacity of seagrass meadows—a critical assessment. Mar Pollut Bull 83:430–439CrossRefPubMedGoogle Scholar
  33. Mcleod E, Chmura GL, Bouillon S, Salm R, Björk DC, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560CrossRefGoogle Scholar
  34. Murdiyarso D, Purbopusito J, Kauffman JB, Warren MW, Sasmito SD, Donato DC, Manuri S, Krisnawati H, Taberima S, Kurnianto S (2015) The potentials of Indonesian mangrove forests for global change mitigation. Nat Clim Change. doi: 10.1038/nclimate2734 Google Scholar
  35. Nadiarti RE, Djuwita B, Purbayanto A, Asmus H (2012) Challenging for seagrass management in Indonesia. J Coast Dev 15:234–242Google Scholar
  36. Nienhuis PH, Coosen J, Kiswara W (1989) Community structure and biomass distribution of seagrasses and macrofauna in the Flores Sea, Indonesia. Neth J Sea Res 23:197–214CrossRefGoogle Scholar
  37. Ong JE (1993) Mangroves—a carbon source and sink. Chemosphere 27:1097–1107CrossRefGoogle Scholar
  38. Ooi JLS, Kendrick GA, Van Niel KP, Affendi YA (2011) Knowledge gaps in tropical Southeast Asian seagrass systems. Estuar Coast Shelf Sci 92:118–131CrossRefGoogle Scholar
  39. Pendleton L, Donato DC, Murray BC, Crooks S, Jenkins WA, Sifleet S, Craft C, Fourqurean JW, Kauffman JB, Marba N, Megonigal P, Pidgeon E, Herr D, Gordon D, Baldera A (2012) Estimating global “blue carbon’ emissions from conversion and degradation of vegetated coastal ecosystems. PLoS One 7:e43542. doi: 10.1371/journal.pone.0043542 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Pratono T, Razak H, Gunawan I (2009) Organochlorine pesticides in the coastal sediment of Citarum estuary, Jakarta Bay: the important role of fine fraction sediment as their agent in transport and processes of their early diagenesis. J I Teknologi Kelautan Tropis 1:23–26Google Scholar
  41. Priosambodo D (2006) Growth rate and production of tropical seagrass Enhalus acoroides (L.) f. Royle in Awerange and Labuange Bays, Barru Regency, south Sulawesi. Torani Bull Mar Sci 16:334–345Google Scholar
  42. Sekiguchi H, Aksornkoae S (2008) Environmental problems in the coastal zone. In: Mimura N (ed) Asia-Pacific coasts and their management: state of the environment. Springer, Dordrecht, pp 65–171CrossRefGoogle Scholar
  43. Short FT, Coles R, Fortes MD, Victor S, Salik M, Isnain I, Andrew J, Seno A (2014) Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends. Mar Pollut Bull 83:408–416CrossRefPubMedGoogle Scholar
  44. Sidik F (2014) Mangrove forest responses to environmental change in Indonesia. PhD dissertation, University of QueenslandGoogle Scholar
  45. Sidik F, Lovelock CE (2013) CO2 efflux from shrimp ponds in Indonesia. PLoS One 8:e66329. doi: 10.1371/journal.pone.0066329 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Siikamäki J, Sanchirico JN, Jardine SL (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc Natl Acad Sci USA 109:14369–14374. doi: 10.1073/pnas.1200519109 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Siikamäki J, Sanchirico JN, Jardine SL, McLaughlin D, Morris D (2013) Blue carbon: coastal ecosystems, their carbon storage, and potential for reducing emissions. Environment 55:6. doi: 10.1080/00139157.2013.843981 CrossRefGoogle Scholar
  48. Spalding M, Kainuma M, Collins L (2010) World atlas of mangroves. Earthscan, LondonGoogle Scholar
  49. Stapel J, Hemminga MA, Bogert CG, Maas YEM (2001) Nitrogen (15N) retention in small Thalassia hemprichii seagrass plots in an offshore meadow in South Sulawesi, Indonesia. Limnol Oceanogr 46:24–37CrossRefGoogle Scholar
  50. Supriadi KR, Bengen DG, Hutomo M (2014) Carbon stock of seagrass community in Barranglompo Island, Makassar. ILMU Kelautan 19:1–10Google Scholar
  51. Terrados J, Duarte CM, Fortes MD, Borum J, Agawin NSR, Bach S, Thampanya U, Kamo-Nielsen KW, Geertz-Hanse O, Vermaat J (1998) Changes in community structure and biomass of seagrass communities along gradients of siltation in SE Asia. Estuar Coast Shelf Sci 46:757–768CrossRefGoogle Scholar
  52. Tun K, Ming CJ, Yeemin T, Phongsuwan N, Amri AY, Ho N, Sour K, Long NV, Nanola C, Lane D, Tuti Y (2008) Status of coral reefs in Southeast Asia. In: Wilkinson CR (ed) Status of coral reefs of the world: 2008. Global coral reef monitoring network and reef and rainforest research centre, Townsville, pp 131–144Google Scholar
  53. UNEP (2008) National reports on seagrass in the South China Sea. UNEP/GEF/SCS Technical Publication No. 12Google Scholar
  54. Van Katwijk MM, van der Welle MEW, Lucassen E, Vonk JA, Christianen MJA, Kiswara W, al Hakim I II, Arifin A, Bouma TJ, Roelofs JGM, Lamers LPM (2011) Early warning indicators for river nutrient and sediment loads in tropical seagrass beds: a benchmark from a near-pristine archipelago in Indonesia. Mar Pollut Bull 62:1512–1520CrossRefPubMedGoogle Scholar
  55. Veron JEN, Devantier LM, Turak E, Green AL, Kininmonth S, Stafford-Smith M, Peterson N (2011) The Coral Triangle. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Dordrecht, pp 47–55CrossRefGoogle Scholar
  56. Vonk JA, Christianen MJA, Stapel J (2010) Abundance, edge effect, and seasonality of fauna in mixed-species seagrass meadows in southwest Sulawesi, Indonesia. Mar Biol Res 6:282–291CrossRefGoogle Scholar
  57. World Bank (2012) National statistics.
  58. Yulianto E, Supkapti WS, Rahardjo AT, Noeradi D, Siregar DA, Suparan P, Hirakawa K (2004) Mangrove shoreline responses to Holocene environmental change, Makassar Strait, Indonesia. Rev Paleobot Palynol 131:251–268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • D. M. Alongi
    • 1
    Email author
  • D. Murdiyarso
    • 2
  • J. W. Fourqurean
    • 3
  • J. B. Kauffman
    • 4
  • A. Hutahaean
    • 5
  • S. Crooks
    • 6
  • C. E. Lovelock
    • 7
  • J. Howard
    • 8
  • D. Herr
    • 9
  • M. Fortes
    • 10
  • E. Pidgeon
    • 8
  • T. Wagey
    • 5
  1. 1.Australian Institute of Marine Science, PMB 3Townsville MCAustralia
  2. 2.Bogor Agricultural UniversityBogorIndonesia
  3. 3.Department of Biological Sciences and Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  4. 4.Department of Fisheries and WildlifeOregon State UniversityCorvallisUSA
  5. 5.Agency for Research and Development of Marine Affairs and FisheriesJakartaIndonesia
  6. 6.Environmental Science AssociatesSan FranciscoUSA
  7. 7.School of Biological SciencesUniversity of QueenslandSaint LuciaAustralia
  8. 8.Marine Climate Change ProgramConservation InternationalArlingtonUSA
  9. 9.International Union for Conservation of NatureGlandSwitzerland
  10. 10.Marine Science Institute CSUniversity of the Philippines DilimanQuezon CityPhilippines

Personalised recommendations