Advertisement

Wetlands Ecology and Management

, Volume 23, Issue 3, pp 327–346 | Cite as

Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes

  • I. T. Lawson
  • T. J. Kelly
  • P. Aplin
  • A. Boom
  • G. Dargie
  • F. C. H. Draper
  • P. N. Z. B. P. Hassan
  • J. Hoyos-Santillan
  • J. Kaduk
  • D. Large
  • W. Murphy
  • S. E. Page
  • K. H. Roucoux
  • S. Sjögersten
  • K. Tansey
  • M. Waldram
  • B. M. M. Wedeux
  • J. Wheeler
Invited Feature Article

Abstract

Our limited knowledge of the size of the carbon pool and exchange fluxes in forested lowland tropical peatlands represents a major gap in our understanding of the global carbon cycle. Peat deposits in several regions (e.g. the Congo Basin, much of Amazonia) are only just beginning to be mapped and characterised. Here we consider the extent to which methodological improvements and improved coordination between researchers could help to fill this gap. We review the literature on measurement of the key parameters required to calculate carbon pools and fluxes, including peatland area, peat bulk density, carbon concentration, above-ground carbon stocks, litter inputs to the peat, gaseous carbon exchange, and waterborne carbon fluxes. We identify areas where further research and better coordination are particularly needed in order to reduce the uncertainties in estimates of tropical peatland carbon pools and fluxes, thereby facilitating better-informed management of these exceptionally carbon-rich ecosystems.

Keywords

Peat Greenhouse gases Remote sensing Tropical ecology Carbon cycle 

Notes

Acknowledgments

We would like to thank A.J. Baird and G.T. Swindles for comments on an earlier version of the text, and the two anonymous reviewers for insightful comments that greatly improved this article. The workshops that led to this article were supported financially by the Universities of Leicester and Nottingham, and the Natural Environment Research Council-funded ‘Earth Observation Technology Cluster’ knowledge exchange initiative.

References

  1. Allen JA, Krauss KW, Ewel KC, Keeland BD, Waguk EE (2005) A tropical freshwater wetland: 1. Structure, growth, and regeneration. Wetl Ecol Manage 13:657–669Google Scholar
  2. Alsdorf DE (2003) Water storage of the central Amazon floodplain measured with GIS and remote sensing imagery. Ann Assoc Am Geogr 93:55–66Google Scholar
  3. Anderson JAR (1983) The tropical peat swamps of western Malesia. In: Gore AJP (ed) Ecosystems of the World 4B: mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 181–199Google Scholar
  4. Asner GP, Mascaro J, Anderson C, Knapp DE, Martin RE, Kennedy-Bowdoin T, van Breugel M, Davies S, Hall JS, Muller-Landau HC, Potvin C, Sousa W, Wright J, Bermingham E (2013) High-fidelity national carbon mapping for resource management and REDD+. Carbon Balance Manage 8:1–7Google Scholar
  5. Baccini A, Goetz SJ, Walker WS, Laporte NT, Sun M, Sulla-Menashe D, Hackler J, Beck PSA, Dubayah R, Friedl MA, Samanta S, Houghton RA (2012) Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat Clim Change 2:182–185Google Scholar
  6. Baker TR, Chao KJ (2011) Manual for coarse woody debris measurement in RAINFOR plots. http://www.rainfor.org/upload/ManualsEnglish/CWD_protocol_RAINFOR_2011_EN.pdf. Accessed 24 Dec 2014
  7. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, di Fiore A, Martínez RV (2004) Increasing biomass in Amazonian forest plots. Philos T R Soc B 359:353–365Google Scholar
  8. Ballhorn U, Siegert F, Mason M, Limin S (2009) Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc Natl Acad Sci USA 106:21213–21218PubMedCentralPubMedGoogle Scholar
  9. Ballhorn U, Jubanski J, Siegert F (2011) ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia. Remote Sens 3:1957–1982Google Scholar
  10. Baum A, Rixen T, Samiaji J (2007) Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuar Coast Shelf S 73:563–570Google Scholar
  11. Betbeder J, Gond V, Frappart F, Baghdadi NN, Briant G, Bartholome E (2014) Mapping of Central Africa forested wetlands using remote sensing. IEEE J Sel Top Appl 7(2014):531–542Google Scholar
  12. Billett MF, Palmer SM, Hope D, Deacon C, Storeton-West R, Hargreaves KJ, Flechard C, Fowler D (2004) Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Glob Biogeochem Cycles 18(1):GB1024Google Scholar
  13. Brady MA (1997) Organic matter dynamics of coastal peat deposits in Sumatra, Indonesia. Unpublished PhD thesis, University of British ColumbiaGoogle Scholar
  14. Buringh P (1984) Organic carbon in soils of the world. In: Woodwell GM (ed) The role of terrestrial vegetation in the global carbon cycle: measurement by remote sensing. Wiley, Chichester, pp 91–109Google Scholar
  15. Bwangoy J-RB, Hansen MC, Roy DP, de Grandi G, Justice CO (2010) Wetland mapping in the Congo Basin using optical and radar remotely sensed data and derived topographical indices. Remote Sens Environ 114:73–86Google Scholar
  16. Campbell D (2005) The Congo River basin. In: Fraser LH, Keddy PA (eds) The world’s largest wetlands: ecology and conservation. Cambridge University Press, Cambridge, pp 149–165Google Scholar
  17. Chambers JQ, Higuchi N, Ferreira LV, Melack JM, Schimel JP (2000) Decomposition and carbon cycling of dead trees in tropical forests of the Central Amazon. Oecologia 122:380–388Google Scholar
  18. Chambers FM, Beilman DW, Yu Z (2011) Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat 7, Art. 7. http://www.mires-and-peat.net/pages/volumes/map07/map0707.php. Accessed 24 Dec 2014
  19. Chave J, Andalo J, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure J-P, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99PubMedGoogle Scholar
  20. Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl Ecol Manage 13:671–684Google Scholar
  21. Chimner RA, Ott CA, Perry CH, Kolka RK (2014) Developing and evaluating rapid field methods to estimate peat carbon. Wetlands. doi: 10.1007/s13157-014-0574-6 Google Scholar
  22. Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystems of the world, vol 4A., Mires: swamp, bog, fen and moor. Elsevier, Amsterdam, pp 159–224Google Scholar
  23. Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388Google Scholar
  24. Couwenberg J, Hooijer A (2013) Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12 Art. 1. http://www.mires-and-peat.net/pages/volumes/map12/map1201.php. Accessed 24 Dec 2014
  25. Couwenberg J, Dommain R, Joosten H (2010) Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob Change Biol 16:1715–1732Google Scholar
  26. Cubizolle H, Mouandza MM, Muller F (2013) Mires and histosols in French Guiana (South America): new data relating to location and area. Mires Peat 12: Art. 3. http://www.mires-and-peat.net/pages/volumes/map12/map1203.php. Accessed 24 Dec 2014
  27. de Grandi GF, Mayaux P, Rauste Y, Rosenqvist A, Saatchi S, Simard M, Leysen M (1998) Flooded forest mapping at regional scale in the Central Africa Congo River Basin: first thematic results derived by ERS-1 and JERS-1 radar mosaics. Proceedings of the second international workshop on retrieval of bio- and geophysical parameters from SAR data, October 21–23, 1998. ESA, Noordwijk, The Netherlands, pp 253–260Google Scholar
  28. de Grandi GF, Mayaux P, Malingreau JP, Rosenqvist A, Saatchi S, Simard M (2000) New perspectives on global ecosystems from wide-area radar mosaics: flooded forest mapping in the tropics. Int J Remote Sens 21:1235–1249Google Scholar
  29. de Vleeschouwer F, Chambers FM, Swindles GT (2010) Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 7: Art. 1. http://www.mires-and-peat.net/pages/volumes/map07/map0701.php. Accessed 24 Dec 2014
  30. Dommain R, Couwenberg J, Joosten H (2011) Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat Sci Rev 30:999–1010Google Scholar
  31. Dommain R, Couwenberg J, Glaser PH, Joosten H, Nyoman I, Suryadiputra N (2014) Carbon storage and release in Indonesian peatlands since the last deglaciation. Quat Sci Rev 97:1–32Google Scholar
  32. Draper FC, Roucoux KH, Lawson IT, Mitchard ETA, Honorio Coronado EN, Lähteenoja O, Torres Montenegro L, Valderrama E, Zaráte R, Baker TR (2014) Distribution and carbon stock of West Amazonian peatlands. Env Res Lett 9:124017Google Scholar
  33. Drew WM, Ewel KC, Naylor RL, Sigrah A (2005) A tropical freshwater wetland: III. Direct use values and other goods and services. Wetl Ecol Manage 13:685–693Google Scholar
  34. Englhart S, Jubanski J, Siegert F (2013) Quantifying dynamics in tropical peat swamp forest biomass with multi-temporal LiDAR datasets. Remote Sens 5:2368–2388Google Scholar
  35. Farmer J, Matthews R, Smith P, Langan C, Hergoualc’h K, Verchot L, Smith JU (2013) Comparison of methods for quantifying soil carbon in tropical peats. Geoderma. doi: 10.1016/j.geoderma.2013.09.013 Google Scholar
  36. Feldpausch TR, Banin L, Phillips OL, Baker TR, Lewis SL, Quesada CA, Affum-Baffoe K, Arets EJMM, Berry NJ, Bird M, Brondizio ES, de Camargo P, Chave J, Djagbletey G, Domingues TF, Drescher M, Fearnside PM, França MB, Fyllas NM, Lopez-Gonzalez G, Hladik A, Higuchi N, Hunter MO, Iida Y, Salim KA, Kassim AR, Keller M, Kemp J, King DA, Lovett JC, Marimon BS, Marimon-Junior BH, Lenza E, Marshall AR, Metcalfe DJ, Mitchard ETA, Moran EF, Nelson BW, Nilus R, Nogueira EM, Palace M, Patiño S, Peh KS-H, Raventos MT, Reitsma JM, Saiz G, Schrodt F, Sonké B, Taedoumg HE, Tan S, White L, Wöll H, Lloyd J (2011) Height–diameter allometry of tropical forest trees. Biogeosciences 8:1081–1106Google Scholar
  37. Finér L, Laine J (1998) Root dynamics at drained peatland sites of different fertility in southern Finland. Plant Soil 201:27–36Google Scholar
  38. Franke J, Navratil P, Keuck V, Peterson K, Siegert F (2012) Monitoring fire and selective logging activities in tropical peat swamp forests. IEEE J Sel Top Appl 5:1811–1820Google Scholar
  39. Gallego-Sala AV, Prentice IC (2012) Blanket peat biome endangered by climate change. Nat Clim Change 3:152–155Google Scholar
  40. Gastaldo RA, Staub JR (1999) A mechanism to explain the preservation of leaf litter lenses in coals derived from raised mires. Palaeogeogr Palaeocl 149:1–14Google Scholar
  41. Gehring C, Zelarayán ML, Almeida RB, Moraes FHR (2011) Allometry of the babassu palm growing on a slash-and-burn agroecosystem of the eastern periphery of Amazonia. Acta Amazonica 41:127–134Google Scholar
  42. Givelet N, Le Roux G, Cheburkin A, Chen B, Frank J, Goodsite ME, Kempter H, Krachler M, Noernberg T, Rausch N, Rheinberger S, Roos-Barraclough F, Sapkota A, Scholz C, Shotyk W (2004) Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. J Environ Monitor 6:481–492Google Scholar
  43. Glaser PH, Volin JC, Givnish TJ, Hansen BCS, Stricker CA (2012) Carbon and sediment accumulation in the Everglades (USA) during the past 4000 years: rates, drivers, and sources of error. J Geophys Res 117:GB3026Google Scholar
  44. Goodman RC, Phillips OL, del Castillo TD, Freitas L, Cortese ST, Monteagudo A, Baker TR (2013) Amazon palm biomass and allometry. For Ecol Manage 310:994–1004Google Scholar
  45. Goodrich JP, Varner RK, Frolking S, Duncan BN, Crill PM (2011) High-frequency measurements of methane ebullition over a growing season at a temperate peatland site. Geophys Res Lett 38:L07404Google Scholar
  46. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195Google Scholar
  47. Harrison ME (2013) Standard operating procedure: forest litter-fall. Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. http://www.outrop.com/uploads/7/2/4/9/7249041/litterfall.pdf. Accessed 24 Dec 2014
  48. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110Google Scholar
  49. Hess LL, Melack JM, Novo EMLM, Barbosa CCF, Gastil M (2003) Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sens Environ 87:404–428Google Scholar
  50. Hirano T, Jauhiainen J, Inoue T, Takahashi H (2009) Controls on the carbon balance of tropical peatlands. Ecosystems 12:873–887Google Scholar
  51. Hirano T, Segah H, Kusin K, Limin S, Takahashi H, Osaki M (2012) Effects of disturbances on the carbon balance of tropical peat swamp forests. Global Change Biol 18:3410–3422Google Scholar
  52. Hirano T, Kusin K, Limin S, Osaki M (2014) Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland. Global Change Biol 20:555–565Google Scholar
  53. Hoekman DH (2007) Satellite radar observation of tropical peat swamp forest as a tool for hydrological modelling and environmental protection. Aquat Conserv 17:265–275Google Scholar
  54. Hoekman D, Vissers M (2007) ALOS PALSAR radar observation of tropical peat swamp forest as a monitoring tool for environmental protection and restoration. Proceedings of the IEEE international geoscience and remote sensing symposium, pp 3710–3714Google Scholar
  55. Hooijer A, Page SE, Jauhiainen J, Lee WA, Lu XX, Idris A, Anshari G (2012) Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9:1053–1071Google Scholar
  56. Householder JE, Janovec JP, Tobler MW, Page SE, Lähteenoja O (2012) Peatlands of the Madre de Dios River of Peru: distribution, geomorphology, and habitat diversity. Wetlands 32:359–368Google Scholar
  57. Hoyos J (2014) Controls of carbon turnover in tropical peatlands. Unpublished PhD thesis, University of NottinghamGoogle Scholar
  58. IPCC (2014) Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands. IPCC, Switzerland (eds Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG)Google Scholar
  59. Iversen CM, Murphy MT, Allen MF, Childs J, Eissenstat DM, Lilleskov EA, Sarjala TM, Sloan VL, Sullivan PF (2012) Advancing the use of minirhizotrons in wetlands. Plant Soil 352:23–39Google Scholar
  60. Jaenicke J, Rieley JO, Mott C, Kimman P, Siegert F (2008) Determination of the amount of carbon stored in Indonesian peatlands. Geoderma 147:51–158Google Scholar
  61. Jaenicke J, Wosten H, Budiman A, Siegert F (2010) Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions. Mitig Adapt Strategies Glob Chang 15:223–239Google Scholar
  62. Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Global Change Biol 11:1788–1797Google Scholar
  63. Jauhiainen J, Limin S, Silvennoinen H, Vasander H (2008) Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration. Ecology 89:3503–3514PubMedGoogle Scholar
  64. Jauhiainen J, Hooijer A, Page SE (2012) Carbon dioxide emissions from an Acacia plantation on peatland in Sumatra, Indonesia. Biogeosciences 9:617–630Google Scholar
  65. Joosten H, Clarke D (2002) Wise use of mires and peatlands—background and principles including a framework for decision-making. International Mire Conservation Group/International Peat Society, FinlandGoogle Scholar
  66. Joosten H, Tapio-Biström M-L, Tol S (eds) (2012) Peatlands—guidance for climate change mitigation through conservation, rehabilitation and sustainable use, 2nd edn. Food and Agriculture Organization of the United Nations/Wetlands International, RomeGoogle Scholar
  67. Jubanski J, Ballhorn U, Kronseder K, Franke J, Siegert F (2013) Detection of large above ground biomass variability in lowland forest ecosystems by airborne LIDAR. Biogeosciences 10:3917–3930Google Scholar
  68. Jung HC, Hamski J, Durand M, Alsdorf D, Hossain F, Lee H, Hussain AKMA, Hasan K, Khan AS, Hoque AKMZ (2010) Characterization of complex fluvial systems using remote sensing of spatial and temporal water level variations in the Amazon, Congo, and Brahmaputra Rivers. Earth Surf Proc Land 35:294–304Google Scholar
  69. Kelly TJ, Baird AJ, Roucoux KH, Baker TR, Coronado ENH, Ríos M, Lawson IT (2014) The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol Process 28:3373–3387Google Scholar
  70. Koehler AK, Sottocornola M, Kiely G (2011) How strong is the current carbon sequestration of an Atlantic blanket bog? Global Change Biol 17:309–319Google Scholar
  71. Krisnawati H, Adinugroho WC, Imanuddin R (2012) Monograph: allometric models for estimating tree biomass at various forest ecosystem types in Indonesia. Research and Development Center for Conservation and Rehabilitation Forestry Research and Development Agency, Bogor, IndonesiaGoogle Scholar
  72. Kronseder K, Ballhorn U, Böhm V, Siegert F (2012) Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LIDAR data. Int J App Earth Obs 18:37–48Google Scholar
  73. Lähteenoja O, Page S (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J Geophys Res-Biogeo. doi: 10.1029/2010JG001508 Google Scholar
  74. Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009a) Amazonian peatlands: an ignored C sink and potential source. Global Change Biol 15:2311–2320Google Scholar
  75. Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009b) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145Google Scholar
  76. Lähteenoja O, Reátegui YR, Räsänen M, del Castillo TD, Oinonen M, Page SE (2012) The large Amazonian peatland carbon sink in the subsiding Pastaza-Marañón foreland basin, Peru. Glob Change Biol 18:164–178Google Scholar
  77. Lähteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in Central Amazonia. Wetlands 33:495–503Google Scholar
  78. Langner A, Miettinen J, Siegert F (2007) Land cover change 2002–2005 in Borneo and the role of fire derived from MODIS imagery. Global Change Biol 13:2329–2340Google Scholar
  79. Larjavaara M, Muller-Landau HC (2011) Cross-section mass: an improved basis for woody debris necromass inventory. Silva Fenn 45:291–298Google Scholar
  80. Lawson IT, Jones TD, Kelly TJ, Coronado ENH, Roucoux KH (2014) The geochemistry of Amazonian peats. Wetlands. doi: 10.1007/s13157-014-0552-z Google Scholar
  81. Lee G (2000) An analysis of human impact on humid, tropical forests in Jambi, Indonesia using satellite images. Proceedings IGARSS 2000 I-VI, pp 1963–1965Google Scholar
  82. Lee H, Beighley RE, Alsdorf D, Jung HC, Shum CK, Duan J, Guo J, Yamazaki D, Andreadis K (2011) Characterization of terrestrial water dynamics in the Congo Basin using GRACE and satellite radar altimetry. Remote Sens Environ 115:3530–3538Google Scholar
  83. Letcher SG, Chazdon RL (2009) Rapid recovery of biomass, species richness, and species composition in a forest chronosequence in northeastern Costa Rica. Biotropica 41:608–617Google Scholar
  84. Lewis SL, Brando PM, Phillips OL, van der Heijden GM, Nepstad D (2011) The 2010 amazon drought. Science 331:554PubMedGoogle Scholar
  85. Li H, Mausel P, Brondizio E, Deardorff D (2010) A framework for creating and validating a non-linear spectrum-biomass model to estimate the secondary succession biomass in moist tropical forests. ISPRS J Photogramm 65:241–254Google Scholar
  86. Limpens J, Berendse F, Blodau C, Canadell JG, Freeman C, Holden J, Roulet N, Rydin H, Schaepman-Strub G (2008) Peatlands and the carbon cycle: from local processes to global implications—a synthesis. Biogeosci Discuss 5:1379–1419Google Scholar
  87. Mäkiränta P, Minkkinen K, Hytönen J, Laine J (2008) Factors causing temporal and spatial variation in heterotrophic and rhizospheric components of soil respiration in afforested organic soil croplands in Finland. Soil Biol Biochem 40:1592–1600Google Scholar
  88. Malhi Y, Phillips OL, Lloyd J, Baker T, Wright J, Almeida S, Arroyo L, Frederiksen T, Grace J, Higuchi N, Killeen T, Laurance W, Leaño C, Lewis S, Meir P, Monteagudo A, Neill D, Vargas PN, Panfil SN, Patiño SN, Pitman N, Quesada CA, Rudas A-L, Salomão R, Saleska S, Silva N, Silveira M, Sombroek WG, Valencia R, Martínez RV, Vieira ICG, Vinceti B (2002) An international network to monitor the structure, composition and dynamics of Amazonian forests (RAINFOR). J Veg Sci 13:439–450Google Scholar
  89. Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology. Chapman and Hall, Boca RatonGoogle Scholar
  90. Melling L, Hatano R, Goh KJ (2005a) Soil CO2 flux from three ecosystems in tropical peatland of Sarawak, Malaysia. Tellus 57B:1–11Google Scholar
  91. Melling L, Hatano R, Goh KJ (2005b) Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biol Biochem 37:1445–1453Google Scholar
  92. Metcalfe DB, Meir P, Aragão LEOC, Malhi Y, da Costa ACL, Braga A, Gonçalves PHL, de Athaydes J, de Almeida SS, Williams M (2007) Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon. J Geophys Res-Biogeo 112:G04001Google Scholar
  93. Metcalfe DB, Meir P, Aragão LEO, da Costa ACL, Braga AP, Gonçalves PHL, de Athaydes JS Jr, de Almeida SS, Dawson LA, Mahli Y, Williams M (2008) The effects of water availability on root growth and morphology in an Amazon rainforest. Plant Soil 311:189–199Google Scholar
  94. Miettinen J, Liew SC (2010) Degradation and development of peatlands in peninsular Malaysia and in the islands of Sumatra and Borneo since 1990. Land Degrad Dev 21:285–296Google Scholar
  95. Miettinen J, Hooijer A, Shi C, Tollenaar D, Vernimmen R, Liew SC, Malins C, Page SE (2012) Extent of industrial plantations on Southeast Asian peatlands in 2010 with analysis of historical expansion and future projections. Glob Change Biol Bioenergy 4:908–918Google Scholar
  96. Mitchard ETA, Saatchi SS, White LJT, Abernethy KA, Jeffery KJ, Lewis SL, Collins M, Lefsky MA, Leal ME, Woodhouse IH, Meir P (2012) Mapping tropical forest biomass with radar and spaceborne LiDAR: overcoming problems of high biomass and persistent cloud. Biogeosciences 9:179–191Google Scholar
  97. Mitsch WJ, Nahlik A, Wolski P, Bernal B, Zhang L, Ramberg L (2010) Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetl Ecol Manage 18:573–586Google Scholar
  98. Moore S, Gauci V, Evans CD, Page SE (2011) Fluvial organic carbon losses from a Bornean blackwater river. Biogeosciences 8:901–909Google Scholar
  99. Moore R, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–663PubMedGoogle Scholar
  100. Murdiyarso D, Hergoualc’h K, Verchot LV (2010) Opportunities for reducing greenhouse gas emissions in tropical peatlands. Proc Natl Acad Sci USA 107:19655–19660PubMedCentralPubMedGoogle Scholar
  101. Nagano T, Osawa K, Ishida T, Sakai K, Vijarnsorn P, Jongskul A, Phetsuk S, Waijaroen S, Yamanoshita T, Norisada M, Kojima K (2013) Subsidence and soil CO2 efflux in tropical peatland in southern Thailand under various water table and management conditions. Mires Peat 11: Art. 6. http://www.mires-and-peat.net/pages/volumes/map11/map1106.php. Accessed 24 Dec 2014
  102. Neill C (1992) Comparison of soil coring and ingrowth methods for measuring belowground production. Ecology 73:1918–1921Google Scholar
  103. Nelson DW, Sommers LE, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. Part 3—chemical methods. Soil Science Society of America/American Society of Agronomy, Madison, Wisconsin, pp 961–1010Google Scholar
  104. Nepstad DC, Moutinho P, Dias-Filho MB, Davidson E, Cardinot G, Markewitz D, Figueiredo R, Vianna N, Chambers J, Ray D, Guerreiros JB, Lefebvre P, Sternberg L, Moreira M, Barros L, Ishida FY, Tohlver I, Belk E, Kalif K, Schwalbe K (2002) The effects of partial throughfall exclusion on canopy processes, aboveground production, and biogeochemistry of an Amazon forest. J Geophys Res-Atmos 107(D20):8085Google Scholar
  105. Nilsson M, Sagerfors J, Buffam I, Laudon H, Eriksson T, Grelle A, Klemedtsson L, Weslien P, Lindroth A (2008) Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire—a significant sink after accounting for all C-fluxes. Global Change Biol 14:2317–2332Google Scholar
  106. Nottingham AT, Turner BL, Winter K, van der Heijden MGA, Tanner EVJ (2011) Arbuscular mycorrhizal mycelial respiration in a moist tropical forest. New Phytol 186:957–967Google Scholar
  107. Page SE, Rieley JO, Shotyk ØW, Weiss D (1999) Interdependence of peat and vegetation in a tropical peat swamp forest. Philos T R Soc B 354:1885–1897Google Scholar
  108. Page SE, Seigert F, Rieley JO, Boehm H-DV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65PubMedGoogle Scholar
  109. Page SE, Wüst RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J Quat Sci 19:25–635Google Scholar
  110. Page SE, Morrison R, Malins C, Hooijer A, Rieley JO, Jauhianen J (2011a) Review of peat surface greenhouse gas emissions from oil palm plantations in Southeast Asia. White Paper No. 15. International Committee on Clean Transportation (ICTT), Washington DC, p 76Google Scholar
  111. Page SE, Rieley JO, Banks CJ (2011b) Global and regional importance of the tropical peatland carbon pool. Global Change Biol 17:798–818Google Scholar
  112. Pangala SR, Moore S, Hornibrook ERC, Gauci V (2013) Trees are major conduits for methane egress from tropical forested wetlands. New Phytol 197:524–531PubMedGoogle Scholar
  113. Parry LE, West LJ, Holden J, Chapman PJ (2014) Evaluating approaches for estimating peat depth. J Geophys Res Biogeosci 119:567–576Google Scholar
  114. Phillips S, Rouse GE, Bustin RM (1997) Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá. Palaeogeogr Palaeoclim Palaeoecol 128:301–338Google Scholar
  115. Phillips OL, Baker TR, Feldpausch T, Brienen R (2009) RAINFOR field manual for plot establishment and remeasurement. http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_June_2009_ENG.pdf. Accessed 24 Dec 2014
  116. Phua MH, Tsuyuki S, Lee JS, Sasakawa H (2007) Detection of burned peat swamp forest in a heterogeneous tropical landscape: a case study of the Klias Peninsula, Sabah, Malaysia. Landsc Urban Plan 82:103–116Google Scholar
  117. Pitkänen A, Turunen J, Simola H (2011) Comparison of different types of peat corers in volumetric sampling. Suo 62:51–57Google Scholar
  118. Price JS (2003) Role and character of seasonal peat soil deformation on the hydrology of undisturbed and cutover peatlands. Water Resour Res 39:1241Google Scholar
  119. Qualls RG, Haines BL (1990) The influence of humic substances on the aerobic decomposition of submerged leaf litter. Hydrobiologia 206:133–138Google Scholar
  120. Rakwatin P, Longepe N, Isoguchi O, Shimada M (2009) Potential of ALOS PALSAR 50 m mosaic product for land cover classification in tropical rain forest. Proceedings of the Asian conference on remote sensing (ACRS)Google Scholar
  121. Rosenqvist Å, Birkett CM (2002) Evaluation of JERS-1 SAR mosaics for hydrological applications in the Congo river basin. Int J Remote Sens 23:1283–1302Google Scholar
  122. Roucoux KH, Lawson IT, Jones TD, Baker TR, Coronado EN, Gosling WD, Lähteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoecol 374:242–255Google Scholar
  123. Roulet NT, Lafleurs PM, Richard PJH, Moore TR, Humphreys ER, Bubier J (2007) Contemporary carbon balance and late Holocene carbon accumulation in a northern peatland. Global Change Biol 13:397–411Google Scholar
  124. Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ETA, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci USA 108:9899–9904PubMedCentralPubMedGoogle Scholar
  125. Sheng Y, Smith LC, MacDonald GM, Kremenetski KV, Frey KE, Velichko AA, Lee M, Beilman DW, Dubinin P (2004) A high-resolution GIS-based inventory of the west Siberian peat carbon pool. Glob Biogeochem Cycles 18:GB3004Google Scholar
  126. Shimada S, Takahashi H, Haraguchi A, Kaneko M (2001) The carbon content characteristics of tropical peats in Central Kalimantan, Indonesia: estimating their spatial variability in density. Biogeochemistry 53:249–267Google Scholar
  127. Shimamura T, Momose K (2005) Organic matter dynamics control plant species coexistence in a tropical peat swamp forest. Philos T R Soc B272:1503–1510Google Scholar
  128. Sjögersten S, Cheesman AW, Lopez O, Turner BL (2011) Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104:147–163Google Scholar
  129. Sjögersten S, Black CR, Evers S, Hoyos-Santillan J, Wright EL, Turner BL (2014) Tropical wetlands: a missing link in the global carbon cycle? Glob Biogeochem Cycles. doi: 10.1002/2014GB004844 Google Scholar
  130. Slater LD, Reeve A (2002) Investigating peatland stratigraphy and hydrogeology using integrated electrical geophysics. Geophysics 67:365–378Google Scholar
  131. Sulistiyanto Y (2004) Nutrient dynamics in different sub-types of peat swamp forest in Central Kalimantan, Indonesia. Unpublished PhD thesis, University of NottinghamGoogle Scholar
  132. Sundari S, Hirano T, Yamada H, Kusin K, Limin S (2012) Effect of groundwater level on soil respiration in tropical peat swamp forests. J Agric Meteorol 68:121–134Google Scholar
  133. Suzuki S, Ishida T, Nagano T, Waijaroen S (1999) Influences of deforestation on carbon balance in a natural tropical peat swamp forest in Thailand. Environ Control Biol 37:115–128Google Scholar
  134. Symbula M, Day FP Jr (1988) Evaluation of two methods for estimating belowground production in a freshwater swamp forest. Am Midl Nat 120:405–415Google Scholar
  135. Tie YL, Esterle JS (1992) Formation of lowland peat domes in Sarawak, Malaysia. In: Aminuddin BY, Tan SL, Aziz B, Samy J, Salmah Z, Siti Petimah H, Choo ST (eds) Proceedings of the international symposium on tropical peatland, 6–10 May 1991, Kuching, Sarawak, Malaysia. Kuala Lumpur: Malaysian Agricultural Research and Development Institute, pp 81–89Google Scholar
  136. Turunen J, Tomppo E, Tolonen K, Reinikainen A (2002) Estimating carbon accumulation rates of undrained mires in Finland–application to boreal and subarctic regions. Holocene 12:69–80Google Scholar
  137. van Asselen S, Roosendaal C (2009) A new method for determining the bulk density of uncompacted peat from field settings. J Sediment Res 79:918–922Google Scholar
  138. Vasander H, Kettunen A (2006) Carbon in boreal peatlands. In: Wieder RK, Vitt DH (eds) Ecological studies, vol 188., Boreal peatland ecosystemsSpringer, Berlin, pp 165–194Google Scholar
  139. Waddell KL (2002) Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Indic 1:139–153Google Scholar
  140. Wahyunto, Ritung S, Subagjo H (2003) Peta Luas Sebaran Lahan Gambut dan Kandungan Kargon di Pulau Sumatera/maps of area of peatland distribution and carbon content in Sumatera, 1990–2002. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), BogorGoogle Scholar
  141. Wahyunto, Ritung S, Subagjo H (2004) Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Kalimantan/Map of Peatland Distribution Area and Carbon Content in Kalimantan, 2000–2002. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), BogorGoogle Scholar
  142. Wahyunto, Heryanto B, Widiastuti HBdF (2006) Peta Sebaran Lahan Gambut, Luas dan Kandungan Karbon di Papua/Maps of Peatland Distribution, Area and Carbon Content in Papua, 2000–2001. Wetlands International—Indonesia Programme Wildlife Habitat Canada (WHC), BogorGoogle Scholar
  143. Waldram MS (2014) Characterising disturbance in tropical peat swamp forest using satellite imaging radar. Unpublished PhD thesis. University of Leicester. http://hdl.handle.net/2381/28631. Accessed 24 Dec 2014
  144. Warren MW, Kauffman JB, Murdiyarso D, Anshari G, Hergoualc’h K, Kurnianito S, Purbopuspito J, Gusmayanti E, Afifudin M, Rahajoe J, Alhamd L, Limin S, Iswandi A (2012) A cost-efficient method to assess carbon stocks in tropical peat soil. Biogeosciences 9:4477–4485Google Scholar
  145. Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203Google Scholar
  146. Wijedasa LS, Lahiru S, Sloan S, Michelakis D, Clements GR (2012) Overcoming limitations with Landsat imagery for mapping of peat swamp forests in Sundaland. Remote Sens 4:2595–2618Google Scholar
  147. Woodall CW, Monleon VJ (2008) Sampling protocol, estimation, and analysis procedures for the down woody materials indicator of the FIA program. USDA Forest Service, Newtown Square, PennsylvaniaGoogle Scholar
  148. Wright HE Jr (1991) Coring tips. J Paleolimnol 6:37–49Google Scholar
  149. Wright HE, Mann DH, Glaser PH (1984) Piston corers for peat and lake sediments. Ecology 65:657–659Google Scholar
  150. Wright EL, Black CR, Cheesman AW, Drage T, Large D, Turner BL, Sjögersten S (2011) Contribution of subsurface peat to CO2 and CH4 fluxes in a neotropical peatland. Global Change Biol 17:2867–2881Google Scholar
  151. Wright EL, Black CR, Cheesman AW, Turner BL, Sjögersten S (2013a) Impact of simulated changes in water table depth on ex situ decomposition of leaf litter from a neotropical peatland. Wetlands 33:217–226Google Scholar
  152. Wright EL, Black CR, Turner BL, Sjögersten S (2013b) Diurnal and seasonal variation in CO2 and CH4 fluxes in a neotropical peatland. Global Change Biol. doi: 10.1111/gcb.12330 Google Scholar
  153. Wüst RA, Bustin RM (2004) Late Pleistocene and Holocene development of the interior peat-accumulating basin of tropical Tasek Bera, Peninsular Malaysia. Palaeogeogr Palaeoclim 211:241–270Google Scholar
  154. Wüst RA, Ward CR, Bustin RM, Hawke MI (2002) Characterization and quantification of inorganic constituents of tropical peats and organic-rich deposits from Tasek Bera (Peninsular Malaysia): implications for coals. Int J Coal Geol 49:215–249Google Scholar
  155. Wüst RA, Bustin RM, Lavkulich LM (2003) New classification systems for tropical organic-rich deposits based on studies of the Tasek Bera Basin, Malaysia. Catena 53:133–163Google Scholar
  156. Yoshioka T, Ueda S, Miyajima T, Wada E, Yoshida N, Sugimoto A, Vijarnsorn P, Boonprakub S (2002) Biogeochemical properties of a tropical swamp forest ecosystem in southern Thailand. Limnology 3:51–59Google Scholar
  157. Yu Z (2012) Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9:4071–4085Google Scholar
  158. Yule CM, Gomez LN (2008) Leaf litter decomposition in a tropical peat swamp forest in Peninsular Malaysia. Wetl Ecol Manage 17:231–241Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • I. T. Lawson
    • 1
  • T. J. Kelly
    • 2
  • P. Aplin
    • 3
  • A. Boom
    • 4
  • G. Dargie
    • 2
  • F. C. H. Draper
    • 2
  • P. N. Z. B. P. Hassan
    • 4
  • J. Hoyos-Santillan
    • 5
  • J. Kaduk
    • 4
  • D. Large
    • 6
  • W. Murphy
    • 4
  • S. E. Page
    • 4
  • K. H. Roucoux
    • 1
  • S. Sjögersten
    • 5
  • K. Tansey
    • 4
  • M. Waldram
    • 4
  • B. M. M. Wedeux
    • 7
  • J. Wheeler
    • 4
  1. 1.Department of Geography and Sustainable DevelopmentUniversity of St AndrewsSt AndrewsUK
  2. 2.School of GeographyUniversity of LeedsLeedsUK
  3. 3.School of GeographyUniversity of NottinghamNottinghamUK
  4. 4.Department of GeographyUniversity of LeicesterLeicesterUK
  5. 5.School of BiosciencesUniversity of NottinghamNottinghamUK
  6. 6.Department of Chemical and Environmental EngineeringUniversity of NottinghamNottinghamUK
  7. 7.Department of Plant SciencesUniversity of CambridgeCambridgeUK

Personalised recommendations