Wetlands Ecology and Management

, Volume 23, Issue 1, pp 19–39 | Cite as

The lakes of the Pantanal: inventory, distribution, geochemistry, and surrounding landscape

  • Maycira CostaEmail author
  • Kevin H. Telmer
  • Teresa L. Evans
  • Teodoro IR. Almeida
  • Montanna T. Diakun
Original Paper


The Brazilian Pantanal is an ecosystem of high biodiversity. This biodiversity is largely supported by the dynamic hydrology and landscape of the region. As part of the mosaic of this unique landscape, there are a variety of geochemically diverse lakes in the lower Nhecolândia (LN) sub-region. The goal of this study was to provide an inventory, spatial distribution, and geochemical analysis of the lakes, and the characteristics of the associated surrounding landscape of the LN region in the Pantanal, and to use that information to further add to the hypotheses on lake formation. To accomplish this, we made use of: (i) the spatial distribution of lakes and surrounding landscape units from a classification product generated from a combination of fine pixel resolution L-band ALOS/PALSAR, C-band Radarsat-2, and Envisat/ASAR; and (ii) in situ measured lake water geochemical properties.With an accuracy of 98 %, we found that the LN sub-region has 637 salinas and 8,214 baías. The greatest degrees of salinas clustering are located in the southeast portion of the study area, and are surrounded by forested savanna, which are in higher grounds less prone to flooding. Baías, however, are more broadly distributed in the region, and the highest occurrence is associated with the open mixed cover, comprised mostly of grasslands, which are in flood-prone areas. Geochemically, salinas present a pH > 9.0 and total dissolved solids (TDS) generally >1,000 mg/L, while baías have a circum-neutral pH not much higher than 7.0, and TDS < 1,000 mg/L. Another group of lakes, locally called salitradas, have pH > 9.0, comparable to the salinas, but relatively lower TDS and conductivity, and significant lower chloride. The combination of the regional scale spatial data and associated geochemistry of lakes suggests that the geomorphological characteristics of the region, and consequent undulating terrains, create groundwater divides and groundwater-sheds that can develop local and regional flow systems and lead to lakes with different geochemistry. The mechanisms responsible for the formation of the diversity of lakes in the region is likely due to combination of isolation from ground water/surface water recharge, evaporation, episodic flushing, and biogeochemical processes in the lake’s watersheds.


Wetlands Pantanal Brazil Radar Lakes Geochemistry 



Japanese Aerospace Exploration Agency (JAXA) through the K & C project, European Space Agency (ESA), Canadian Space Agency (CSA) through the SOAR initiative, and financial support from the National Geographic Society (NGS) and the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. Abdon MM, Silva JS, Pott VJ, Pott A, Silva MP (1998) Utilizacao de dados anologicos do Landsat-TM na discriminacao de vegetacao de parte da sub-regiao da Nhecolandia no Pantanal. Pesqui Agropecu Bras 33:1799–1813Google Scholar
  2. Alho CJR (2008) Biodiversity of the Pantanal: response to seasonal flooding regime and to environmental degradation. Braz J Biol 68(4):957–966CrossRefPubMedGoogle Scholar
  3. Almeida TIR (2011) Salinas e baías do Pantanal, enigma parcialmente resolvido. Ciencia Hoje 278:28–33Google Scholar
  4. Almeida TIR, Paranhos Filho AC, da Rocha MM, de Souza GF, Sígolo JB, Bertolo RA (2009) Estudo sobre as diferenças de altimetria do nível da água de lagoas salinas e hipossalinas no Pantanal da Nhecolândia: Um indicativo de funcionamento do mega sistema lacustre. Geociências 28(4):401–415Google Scholar
  5. Almeida TIR, Calijuri MDC, Falco PB, Casali SP, Kupriyanova E, Filho ACP (2011) Biogeochemical processes and the diversity of Nhecolândia lakes, Brazil. Ann Braz Acad Sci 83(2):391–407CrossRefGoogle Scholar
  6. Barbiéro L, de Queiroz Neto JP, Ciornei G, Sakamoto AY, Capellari B, Fernandes E, Valles V (2002) Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes. Wetlands 22(3):528–540CrossRefGoogle Scholar
  7. Costa MPF, Telmer KH (2006) Utilizing SAR imagery and aquatic vegetation to map fresh and brackish lakes in the Brazilian Pantanal wetland. Remote Sens Environ 10(3):204–213CrossRefGoogle Scholar
  8. da Cunha CN, Junk WJ (2011) A preliminary classification of the habitats of the Pantanal of Mato Grosso and Mato Grosso do Sul, and its relation to national and international wetland classification systems. In: Junk WJ, da Silva CJ, da Cunha CN, Wantzen KM (eds) The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia-Moscow, pp 127–141Google Scholar
  9. Desbiez ALJ, Bodmer RE, Santos SA (2009) Wildlife habitat selection and sustainable resources management in a Neotropical wetland. Int J Biodivs Conserv 1(1):11–20Google Scholar
  10. Drever JI (1997) The geochemistry of natural waters, surface and groundwater environments. Prentice Hall, New JerseyGoogle Scholar
  11. Drever JI, Smith CL (1978) Cyclic wetting and drying of the soil zone as an influence on the chemistry of groundwater in arid terrains. Am J Sci 278:1448–1454CrossRefGoogle Scholar
  12. Evans TL, Costa M (2013) Landcover classification of the Lower Nhecolândia subregion of the Brazilian Pantanal wetlands using ALOS/PALSAR, RADARSAT-2 and ENVISAT/ASAR imagery. Remote Sens Environ 128(2013):118–137CrossRefGoogle Scholar
  13. Fernandes E (2007) Organização espacial dos componentes da paisagem da Baixa Nhecolândia—Pantanal de Mato Grosso do Sul. Tese de Doutoramento, Faculdade de Filosofia, Letras e Ciências Humanas—Departamento de Geografia, Universidade de São Paulo (USP), São Paulo, p 177Google Scholar
  14. Fetter CW (2001) Applied hydrogeology. Upper Saddle river, 4th edn. Prentice Hall, New JerseyGoogle Scholar
  15. Frape SK, Fritz P (1987) Geochemical trends from groundwaters from the Canadian Shield. In: P Fritz, SK Frape (eds) Saline waters and gasses in crystalline rocks, Geological Association of Canada special paper 33, pp 19–38Google Scholar
  16. Furian S, Martins ERC, Parizotto TP, Rezende-Filho AT, Victoria RL, Barbiéro L (2013) Chemical diversity and spatial variability in myriad lakes in Nhecolândia in the Pantanal wetlands of Brazil. Limnol Oceanogr 58(6):2249–2261CrossRefGoogle Scholar
  17. Furquim SAC, Barbiéro L, Graham RC, de Queiroz Neto JP, Ferreira RPD, Gesch DB (2010) Soil mineral genesis and distribution in a saline lake landscape of the Pantanal Wetland, Brazil. Geoderma 154:331–342CrossRefGoogle Scholar
  18. Galvão LS, Rereira Filho W, Abdon MM, Novo EMLM, Silva JSV, Ponzoni FJ (2003) Spectral reflectance characterization of shallow lakes from the Brazilian Pantanal wetlands with field and airborne hyperspectral data. Int J Remote Sens 24(21):4093–4112CrossRefGoogle Scholar
  19. Gonçalves HC, Mercante MA, Santos ET (2011) Hydrological cycle. Braz J Biol 71(1):241–253PubMedGoogle Scholar
  20. Hamilton SK, Sippel SJ, Melack JM (1996) Inundation patterns in the Pantanal wetlands of South America determined from passive microwave remote sensing. Arch für Hydrobiol 137(1):1–23Google Scholar
  21. Hubbert MK (1940) The theory of groundwater motion. J Geol 48:795–944CrossRefGoogle Scholar
  22. Junk WJ, da Cunha CN, da Silva CJ, Wantzen KM (2011) The Pantanal: a large South American wetland and its position in limnological theory. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: ECOLOGY, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia-Moscow, pp 23–44Google Scholar
  23. Junk WJ, da Cunha CN, Wantzen KM, Petermann P, Strüssmann C, Marques MI, Adis J (2006) Biodiversity and its conservation in the Pantanal of Mato Grosso, Brazil. Aquat Sci 68:278–309CrossRefGoogle Scholar
  24. Medri ÍM, Mourão G (2005) Home range of giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetland, Brazil. J Zool 266(4):365–375CrossRefGoogle Scholar
  25. Meyboom P (1967) Mass transfer studies to determine the groundwater regime of permanent lakes in hummocky moraine of Westernn Canada. J Hydrol 5:117–142CrossRefGoogle Scholar
  26. Mourão GM, Ishii IH, Campos ZMS (1988) Alguns fatores limnologicos relacionados com a ictiofauna de baias e salinas do Pantanal da Nhecolandia, MS, Brasil. Acta Limnol Brasiliensia 2:181–198Google Scholar
  27. Nogueira FMB, Silveira RML, Girard P, da Silva CJ, Abdo MSA, Wantzen KM (2011) Hydrochemistry of lakes, rivers and groundwater. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia-Moscow, pp 167–198Google Scholar
  28. Novack T, Hayakawa EH, Bertani TDC, Zani H (2010) Classification of lakes inthe Pantanal of Nhecolândia (Brazil) using object-based image analysis. Rev Geográf Acad 4(1):32–46Google Scholar
  29. O’Sullivan D, Unwin DJ (2010) Geographic information analysis, 2nd edn. Wiley, HobokenCrossRefGoogle Scholar
  30. Por FD (1995) The Pantanal of Mato Grosso (Brazil): world’s largest wetlands. In: Dumont HJ, Werger MJA (eds) Monographiae biologicae, vol 73. Kluwer, DordrechtGoogle Scholar
  31. Pott VJ, Pott A (2000) Plantas aquaticas do Pantanal. EMBRAPA, BrazilGoogle Scholar
  32. Pott VJ, Pott A (2011) Species diversity, distribution, and biomass of aquatic macrophytes of the Pantanal. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia-Moscow, pp 257–279Google Scholar
  33. Pott A, Ratter JA (2011) Species diversity of terrestrial plants and human impact on the vegetation of the Pantanal. In: Junk WJ, da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia-Moscow, pp 281–300Google Scholar
  34. Pott A, Oliveira AKM, Damasceno-Junior GA, Silva JSV (2011) Plant diversity of the Pantanal wetland. Braz J Biol 71(1):265–273PubMedGoogle Scholar
  35. Sakamoto AY (1997) Dinâmica hídrica em uma lagoa “Salina” e seu entorno noPantanal da Nhecolândia: contribuição ao estudo das relações entre o meio físicoe a ocupação, Fazenda São Miguel do Firme, MS. Ph.D thesis -FFLCH/USP, São PauloGoogle Scholar
  36. Sakamoto AY, Queiroz Neto JP, Fernandes E, Lucati HM, Capellari B (2006) Topografia de lagoas salinas e seus entornos no Pantanal da Nhecolândia (MS). Simposio sobre Recursos Naturais e Socio-economicos do Pantanal 2:1–12Google Scholar
  37. Salis SM, Assis MA, Mattos PP, PIao ACS (2006) Estimating the above ground biomass and wood volume of savanna woodlands in Brazil′s Pantanal wetlands based on allometric correlations. For Ecol Manage 228:61–68CrossRefGoogle Scholar
  38. Santos KRS, Sant′anna CL (2010) Cyanobacteria from different types of lakes (“salina”, “salitrada” and “baía”) representative of the Pantanal da Nhecolândia, MS, Brazil. Rev Bras de Bot 33:61–83Google Scholar
  39. Seidl A (2000) Global valuation of ecosystem services: application to the Pantanal da Nhecolândia, Brazil. Ecol Econ 33(1):1–6CrossRefGoogle Scholar
  40. Silva MHS, Passos MMP, Sakamoto AY (2013) As Lagoas Salitradas do Pantanal da Nhecolândia: um estudo da paisagem baseado no modelo GTP—Geossistema, Território e Paisagem. Braz J Bot, 33(1)Google Scholar
  41. Tomas WM, Cáceres NC, Nunes AP, Fischer E, Mourão G, Campos Z (2011) Mammals in the Pantanal wetland, Brazil. In: Junk WJ, Da Silva CJ, Nunes da Cunha C, Wantzen KM (eds) The Pantanal: ecology, biodiversity and sustainable management of a large neotropical seasonal wetland. Pensoft Publishers, Sofia-Moscow, pp 565–597Google Scholar
  42. Tóth JA (1963) A theoretical analysis of ground-water flow in small drainage basins. J Geophys Res 68:4795–4811CrossRefGoogle Scholar
  43. Zani H, Assine ML (2011) Paleocanais no megaleque do rio Taquari: mapeamento e significado geomorfológico. Rev Bras de Geociênc 41:37–43Google Scholar
  44. Zani H et al (2012) Remote sensing analysis of depositional landforms in alluvial settings: method development and application to the Taquari megafan, Pantanal (Brazil). Geomorphology 161:82–99CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Maycira Costa
    • 1
    Email author
  • Kevin H. Telmer
    • 1
    • 2
  • Teresa L. Evans
    • 1
  • Teodoro IR. Almeida
    • 3
  • Montanna T. Diakun
    • 1
  1. 1.Department of GeographyUniversity of VictoriaVictoriaCanada
  2. 2.Artisanal Gold CouncilVictoriaCanada
  3. 3.Departamento de Geologia Sedimentar e Ambiental, Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations