Advertisement

Wetlands Ecology and Management

, Volume 23, Issue 2, pp 269–283 | Cite as

Carbon stock in the Sundarbans mangrove forest: spatial variations in vegetation types and salinity zones

  • Md. Mizanur Rahman
  • Md. Nabiul Islam Khan
  • A. K. Fazlul Hoque
  • Imran Ahmed
Original Paper

Abstract

The Sundarbans (21º30′–22º30′ N and 89º00′–89º55′ E) is the largest mangrove forest in the world. Forests are very important for sequestering atmospheric carbon and mangroves are amongst the most efficient in carbon sequestration. This study presents the estimation of ecosystem carbon (above- and belowground) stock in the Sundarbans using a large scale data sets collected from systematic grid samples throughout the forest. The variation of carbon stock in different vegetation types and in different salinity zones in Sundarbans was investigated. The relationships between carbon stock and different vegetation functional attributes (basal area, mean tree height, crown coverage etc.) were also investigated. The amount of carbon stored varied significantly among vegetation types, salinity zones and vegetation functional attributes (P < 0.05). Sundri (Heritiera fomes) dominated forest types store more ecosystem carbon (360.1 ± 22.71 Mg C ha−1) than other vegetation types. The fresh water zone shows the highest ecosystem carbon stock (336.09 ± 14.74 Mg C ha−1) followed by moderate and strong salinity zones. Salinity was found to enhance belowground carbon stock as revealed by the lowest proportion of belowground carbon stock (57.2 %) with respect to ecosystem carbon in fresh water zone and by the highest (71.9 %) in strong salinity zone. The results also reveal that no matter whether the mangroves are tall or dwarf, a significant amount of carbon is stored into the sediment. The vegetation attributes (basal area and mean tree height) of the dominant mangrove species in each vegetation type were identified as the key indicator of ecosystem carbon stock. We recommended some generalized regression equations to predict ecosystem carbon stock from basal area or mean tree height.

Keywords

Carbon sequestration Aboveground carbon Belowground carbon REDD+ Vegetation functional attributes Ecosystem carbon 

Notes

Acknowledgments

The authors are very grateful to Bangladesh Forest Department for sharing Sundarbans carbon inventory data and inclusion of the author in the field inventory team. We would like to thank Dr. Daniel Donato and Dr. Masudur Rahman for key suggestion in this study study and Dr. Abu Syed for sharing climate data around Sundarbans. The authors would also like to thank to US Agency for International Development (USAID-Bangladesh) for providing fund.

References

  1. Adame MF, Kauffman JB, Medina I, Gamboa JN, Torres O, Caamal JP, Reza M (2013) Carbon stocks of tropical coastal wetlands within the karstic landscape of the mexican caribbean. PLoS One 8(2):e56569. doi: 10.1371/journal.pone.0056569 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Ahmed I, Iqbal Z (2011) Sundarbans carbon inventory (2010) a comparison with 1997 inventory. SAARC For J 1:59–72Google Scholar
  3. Anderson K, Bows A (2011) Beyond ‘dangerous’ climate change: emission scenarios for a new world. Philos Trans R Soc A 369(1934):20–44. doi: 10.1098/rsta.2010.0290 CrossRefGoogle Scholar
  4. Baker TR, Phillips OL, Malhi Y, Almeida S, Arroyo L, Di Fiore A, Erwin T, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Lloyd J, Monteagudo A, Neill DA, Patiño S, Pitman NCA, Silva JNM, Martínez RV (2004) Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob Change Biol 10:545–562. doi: 10.1111/j.1365-2486.2004.00751.x CrossRefGoogle Scholar
  5. Ball MC (1998) Mangrove species richness in relation to salinity and water logging: a case study along the Adelaide River floodplain, northern Australia. Glob Ecol Biogeogr Lett 7:73–82CrossRefGoogle Scholar
  6. Ball MC (2002) Interactive effects of salinity and irradiance on growth: implications for mangrove forest structure along salinity gradients. Trends Ecol 16:126–139Google Scholar
  7. Bouillon SM, Frankignoulle F, Dehairs B, Velimirov A, Eiler H, Etcheber G, Borges AV (2003) Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: the local impact of extensive mangrove forests. Global Biogeochem Cycles 17(4):1114. doi: 10.1029/2002GB002026 CrossRefGoogle Scholar
  8. Bouillon S, Borges AV, eda-Moya EC, Diele K, Dittmar T, Duke NC, Kristensen E, Lee SY, Marchand C, Middelburg JJ, Rivera-Monroy VH, Smith TJ III, Twilley RR (2008) Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochem Cycles 22:1–12. doi: 10.1029/2007GB003052 CrossRefGoogle Scholar
  9. Brown JK (1971) A planar intersect method for sampling fuel volume and surface area. For Sci 17:96–102Google Scholar
  10. Carsan S, Orwa C, Harwood C, Kindt R, Stroebel A, Neufeldt H, Jamnadass R (2012) African wood density database. World Agroforestry Centre, NairobiGoogle Scholar
  11. Cerón-Bretón RM, Cerón-Bretón JG, Sánchez-Junco RC, Damián-Hernández DL, Guerra-Santos JJ, Muriel-Garcia M, Cordova-Quiroz AV (2011) Evaluation of carbon sequestration potential in mangrove forest at three estuarine sites in Campeche Mexico. Int J Energy Environ 5(4):487–494Google Scholar
  12. Chaffey DR, Miller FR, Sandom JH (1985) A forest inventory of the Sundarbans, Bangladesh. Main report. Overseas Development Administration, EnglandGoogle Scholar
  13. Chave J, Condit R, Aguilar S, Hernandez A, Lao S, Perez R (2004) Error propagation and scaling for tropical forest biomass estimates. Philos Trans R Soc B 359:409–420CrossRefGoogle Scholar
  14. Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon density and balance in tropical forests. Oecologia 145:87–99. doi: 10.1007/s00442-005-0100-x CrossRefPubMedGoogle Scholar
  15. Chave J, Coomes DA, Jansen S, Lewis SL, Swenson NG, Zanne AE (2009) Towards a worldwide wood economics spectrum. Ecol Lett 12(4):351–366. http://dx.doi.org/10.1111/j.1461-0248.2009.01285.x
  16. Crooks S, Herr D, Tamelander J, Laffoley D, Vandever J (2011) Mitigating climate change through restoration and management of coastal wetlands and near-shore marine ecosystems: challenges and opportunities. Environment Department Paper 121, World Bank, Washington, DCGoogle Scholar
  17. Detwiler RP, Hall CAS (1988) Tropical forests and the global carbon cycle. Science 239:42–47. doi: 10.1126/science.239.4835.42 CrossRefPubMedGoogle Scholar
  18. Donato D, Kauffman JB, Murdiyarso D, Kurnianto S, Stidham M, Kanninen M (2011) Mangroves among the most carbon-rich forests in the tropics. Nat Geosci 4:293–297. doi: 10.1038/ngeo1123 CrossRefGoogle Scholar
  19. Fujimoto K (2004) Below-ground carbon sequestration of mangrove forests in the Asia-Pacific region. In: Vannucci M (ed) Mangrove management and conservation. United Nations University Press, New York, pp 138–146Google Scholar
  20. Fujimoto K, Imaya A, Tabuchi R, Kuramoto S, Utsugi H, Murosushi T (1999) Belowground carbon storage of Micronesian mangrove forests. Ecol Res 14:409–413. doi: 10.1046/j.1440-1703.1999.00313.x CrossRefGoogle Scholar
  21. Gifford RM (2000) Carbon contents of above-ground tissues of forest and woodland trees. National carbon accounting system technical report no. 22. Australian Greenhouse Office, CanberraGoogle Scholar
  22. Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A et al (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159. doi: 10.1111/j.1466-8238.2010.00584.x CrossRefGoogle Scholar
  23. Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu SR, Nabuurs GJ, Nilsson S, Shvidenko AZ (2002) Forest carbon sinks in the Northern Hemisphere. Ecol Appl 12:891–899. doi: 10.1890/1051-0761(2002)012[0891:FCSITN]2.0.CO;2
  24. Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban Mangrove Ecosystem. Aquat Sci 68:338–354. doi: 10.1007/s00027-006-0868-8 CrossRefGoogle Scholar
  25. Gross J, Flores E, Schwendenmann L (2014) Stand structure and aboveground biomass of a Pelliciera rhizophorae Mangrove Forest, Gulf of Monitjo Ramsar Site, Pacific Coast, Panama. Wetlands 34(1):55–65. doi: 10.1007/s13157-013-0482-1 CrossRefGoogle Scholar
  26. Harmon ME, Sexton J (1996) Guidelines for measurements of woody detritus in forest ecosystems. US LTER Publication No. 20. US LTER Network Office, University of Washington, College of Forest Resources,Seattle, USAGoogle Scholar
  27. Iftekhar MS, Islam MR (2004) Managing mangroves in Bangladesh: a strategy analysis. J Coast Conserv 10:139–146 Google Scholar
  28. Iftekhar MS, Saenger P (2008) Vegetation dynamics in the Bangladesh Sundarbans mangroves: a review of forest inventories. Wetlands Ecol Manag 16(4):291–312. doi: 10.1007/s11273-007-9063-5 CrossRefGoogle Scholar
  29. IPCC (2007) Summary for policymakers. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Avery KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, CambridgeGoogle Scholar
  30. IPCC (2013) Summary for Policymakers. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United KingdomGoogle Scholar
  31. Islam MS (2011) Biodiversity and livelihoods: a case study in Sundarbans reserve forest, world heritage and ramsar site (Bangladesh). A master thesis, University of Klagenfurt, AustriaGoogle Scholar
  32. IUFRO (2009) Adaptation of forests and people to climate change. A global assessment report. IUFRO World Series 22:224Google Scholar
  33. Jones TG, Ratsimba HR, Ravaoarinorotsihoarana L, Cripps G, Bey A (2014) Ecological variability and carbon stock estimates of mangrove ecosystems in northwestern Madagascar. Forests 5:177–205. doi: 10.3390/f5010177 CrossRefGoogle Scholar
  34. Karim A (1988) Environmental factors and the distribution of mangroves in the Sundarbans with special reference to Heritiera fomes. Buch.-Ham. Ph. D.thesis. University of Calcutta, IndiaGoogle Scholar
  35. Kathiresan K, Bingham BL (2001) Biology of mangrove and mangrove ecosystems. Adv Mar Biol 40:81–251CrossRefGoogle Scholar
  36. Kauffman JB, Cole TG (2010) Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30:1077–1084. doi: 10.1007/s13157-010-0114-y CrossRefGoogle Scholar
  37. Kauffman JB, Heider C, Cole TG, Dwire KA, Donato DC (2011) Ecosystem carbon stocks of micronesian mangrove forests. Wetlands 31:343–352CrossRefGoogle Scholar
  38. Khan MNI, Suwa R, Hagihara A (2007) Carbon and nitrogen pools in a mangrove stand of Kandelia obovata (S., L.) Yong: vertical distribution in the soil–vegetation system. Wetl Ecol Manag 15(2):141–153. doi: 10.1007/s11273-006-9020-8
  39. Klimešová J, Latzel V, de Bello F, van Groenendael JM (2008) Plant functional traits in studies of vegetation changes in response to grazing and mowing: towards a use of more specific traits. Preslia 80:245–253Google Scholar
  40. Komiyama A, Havanond S, Srisawatt W, Mochida Y, Fujimoto K, Ohnishi T, Ishihara S, Miyagi T (2000) Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. For Ecol Manag 139:127–134. doi: 10.1016/S0378-1127(99)00339-4 CrossRefGoogle Scholar
  41. Komiyama A, Poungparn S, Kato S (2005) Common allometric equations for estimating the tree weight of mangroves. J Trop Ecol 21:471–477. doi: http://dx.doi.org/10.1017/S0266467405002476
  42. Komiyama A, Ong JE, Poungparn S (2008) Allometry, biomass, and productivity of mangrove forests: a review. Aquat Bot 89:128–137. doi: 10.1016/j.aquabot.2007.12.006 CrossRefGoogle Scholar
  43. Kridiborworn P, Chidthaisong A, Yuttitham M, Tripetchkul S (2012) Carbon sequestration by mangrove forest planted specifically for charcoal production in Yeesarn, Samut songkram. J Sustain Energy Environ 3:87–92Google Scholar
  44. Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89:201–219. doi: 10.1016/j.aquabot.2007.12.005 CrossRefGoogle Scholar
  45. Ksawani I, Kmarusaman J, Nurum-Nadhirah MI (2007) Biological diversity assessment of Tok Bali mangrove forest, klantan, Malaysia. WSEAS Trans Environ Dev 3:7–44Google Scholar
  46. Laffoley DDA, Grimsditch G (2009) The management of natural coastal carbon sinks. IUCN Gland, SwitzerlandGoogle Scholar
  47. Macdicken KG (1997) A guide to monitoring carbon storage in forestry and agroforestry projects. Specialist 3:1–87Google Scholar
  48. Machiwa JF, Hallberg RO (2002) An empirical model of the fate of organic carbon in a mangrove forest partly affected by anthropogenic activity. Ecol Model 147:69–83. doi: 10.1016/S0304-3800(01)00407-0 CrossRefGoogle Scholar
  49. Mitra A, Sengupta K, Banerjee K (2011) Standing biomass and carbon storage of above-ground structures in dominant mangrove trees in the Sundarbans. For Ecol Manag 261:1325–1335. doi: 10.1016/j.foreco.2011.01.012 CrossRefGoogle Scholar
  50. Murdiyarso D, Donato D, Kauffman JB, Kurnianto S, Stidham M, Kanninem M (2010) Carbon storage in mangrove and peat land ecosystems—a preliminary account from plots in Indonesia. Working paper 48. Center for International Forestry Research, Bogor, IndonesiaGoogle Scholar
  51. Nelson DW, Sommers LE (1996) Methods of soil analysis. part 3. Chemical methods. Soil Sci Soc Am Book Ser 5:961–1010Google Scholar
  52. Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65. doi: 10.1038/nature01131 CrossRefPubMedGoogle Scholar
  53. Pearson T, Walker S, Brown S (2005) Sourcebook for land use, land-use changes Forestry projects. Report from BioCF and Winrock International. Available at: http://www.winrock.org/ecosystems/tools.asp?
  54. Ruiz-Jaen MC, Potvin C (2010) Can we predict carbon stocks in tropical ecosystems from tree diversity? Comparing species and functional diversity in a plantation and a natural forest. New Phytol. 189(4):978–987.  doi: 10.1111/j.1469-8137.2010.03501.x
  55. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.
  56. Sapit D, Damrong S, Ladawan P, Chongrak W, Sakhan T, Aor P et al (2011) An assessment of stand structure and carbon storage of a mangrove forest in Thailand. IUFRO World Ser 29:28–30Google Scholar
  57. Schnitzer SA, DeWalt SJ, Chave J (2006) Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica 38(5):581–591. doi: 10.1111/j.1744-7429.2006.00187.x CrossRefGoogle Scholar
  58. Seidensticker J, Hai MA (1983) The sundarbans wildlife management plan: conservation in the Bangladesh coastal zone. IUCN, Gland, SwitzerlandGoogle Scholar
  59. Siddiqi NA (2001) Mangrove forestry in Bangladesh. Institute of Forestry and Environmental Sciences, University of Chittagong. Nibedon Press Limited, Chittagong, BangladeshGoogle Scholar
  60. Siikamäki J, Sanchirico JN, Jardine SL (2012) Global economic potential for reducing carbon dioxide emissions from mangrove loss. PNAS 109:14369–14374. doi: 10.1073/pnas.1200519109 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Smith CW (1983a) Soil survey of Islands of Yap, federated states of Micronesia. USDA Natural Resources Conservation Service. http://soils.usda.gov/survey/online_surveys/pacific_basin/
  62. Smith CW (1983b) Soil survey of Palau Islands, Republic of Palau. USDA Natural Resources Conservation Service,. Alsoavailable online at http://soils.usda.gov/survey/online_surveys/pacific_basin/
  63. Twilley RR, Chen R (1998) A water budget and hydrology model of a basin mangrove forest in Rookery Bay, Florida. Mar Freshw Res 49:309–323. doi: 10.1071/MF97220 CrossRefGoogle Scholar
  64. United States Department of Agriculture (USDA) (2008) Field instructions for the annual inventory of California, Oregon and Washington. USDA Forest Service, Forest Inventory and Analysis Program, PNW Research StationGoogle Scholar
  65. Van Wagner CE (1968) The line intersect method in forest fuel sampling. For Sci 24:469–483Google Scholar
  66. Wahid SM, Mukand SB, Bhuiyan AR (2007) Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh. J Hydrol 332:381–395. doi: 10.1016/j.jhydrol.2006.07.016 CrossRefGoogle Scholar
  67. Westoby M (1998) A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199:213–227. doi: 10.1023/A:1004327224729 CrossRefGoogle Scholar
  68. Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002) Plant ecological strategies: some leading dimensions of variation between species. Annu Rev Ecol Syst 33:125–159. doi: 10.1146/annurev.ecolsys.33.010802.150452 CrossRefGoogle Scholar
  69. Woodwell GM, Hobbie JE, Houghton RA, Melillo JM, Moore B, Peterson BJ, Shaver GR (1983) Global deforestation: contribution to atmospheric carbon dioxide. Science 222(4628):1081–1086. doi: 10.1126/science.222.4628.1081 CrossRefPubMedGoogle Scholar
  70. Zanne AE, Lopez-Gonzalez G, Coomes DA, Ilic J, Jansen S, Lewis SL, Miller RB, Swenson NG, Wiemann MC, Chave J (2009) Data from: towards a worldwide wood economics spectrum. Dryad Digital Repository. http://dx.doi.org/10.5061/dryad.234

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Md. Mizanur Rahman
    • 1
  • Md. Nabiul Islam Khan
    • 1
  • A. K. Fazlul Hoque
    • 1
  • Imran Ahmed
    • 2
  1. 1.Forestry and Wood Technology Discipline, Khulna UniversityKhulnaBangladesh
  2. 2.Forest Management Wing, Bangladesh Forest DepartmentDhakaBangladesh

Personalised recommendations