Skip to main content

Advertisement

Log in

The role of wetland microinvertebrates in spreading human diseases

  • Invited Feature Article
  • Published:
Wetlands Ecology and Management Aims and scope Submit manuscript

Abstract

The increasing loads of anthropogenic pollutants, compounded with climate change events, are likely to induce environmental changes in many wetlands with impacts on the native microinvertebrates and pathogens causing increased occurrence of water-borne diseases, which affect millions of people each year. In wetlands bacterial pathogens are actively preyed on by many protozoa and filter-feeding organisms but this predation can be compensated by the nourishment and protection offered by certain microinvertebrates, acting as hosts, e.g., chitinous rotifers, copepods and cladocerans. The complex interactions of ecological, biological, and genetic components mediate disease-causing organisms to exploit microinvertebrate hosts to occupy diverse niches, obtain nutrition, and withstand physico-chemical stresses. The persistence of the human pathogens in wetlands is often enabled by their association with microinvertebrates and also depends on their quorum sensing mediated colonization, biofilm formation, switching into dormant stage, and horizontal transfer of adaptive genes. The symbiosis with microinvertebrates is facilitated by the pathogen’s immune evasion and fitness factors, e.g., Type-IV pili, capsular-polysaccharides, nutrient transportation, virulence and binding proteins, proteases, chitinases, and secretion systems. Spatio-temporal variation in the population of copepods and aquatic eggs/larvae of mosquitoes and midge flies, which act as vectors, can influence the outbreaks of cholera, diarrhea, malaria, dengue, filariasis and drucunculiasis. Changes in climatic factors (temperature, salinity, cyclones, rainfall, etc.) and anthropogenic pollutions (sewage, fertilizer and insecticide) may modify the abundance and biodiversity of microinvertebrates, and thus possibly exacerbate the persistence and dispersal of water-borne pathogens. Thus there is a need to adopt ecohydrological and eco-friendly interventions for managing wetlands while conserving them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abd H, Valeru SP, Sami SM, Saeed A, Raychaudhuri S, Sandström G (2010) Interaction between Vibrio mimicus and Acanthamoeba castellanii. Environ Microbiol Rep 2:166–171

    PubMed  CAS  PubMed Central  Google Scholar 

  • Alam M, Sultana M, Nair GB, Siddique AK, Hasan NA, Sack RB, Sack DA, Ahmed KU, Sadique A, Watanabe H, Grim CJ, Huq A, Colwell RR (2007) Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci USA 104:17801–17806

    PubMed  CAS  PubMed Central  Google Scholar 

  • Anderson GL, Caldwell KN, Beuchat LR, Williams PL (2003) Interaction of a free-living soil nematode, Caenorhabditis elegans, with surrogates of foodborne pathogenic bacteria. J Food Prot 66:1543–1549

    PubMed  Google Scholar 

  • Appleton CC, Madsen H (2012) Human schistosomiasis in wetlands in southern Africa. Wetl Ecol Manag 20:253–269

    Google Scholar 

  • Asakura H, Ishiwa A, Arakawa E, Makino S, Okada Y, Yamamoto S, Igimi S (2007) Gene expression profile of Vibrio cholerae in the cold stress-induced viable but non-culturable state. Environ Microbiol 9:869–879

    PubMed  CAS  Google Scholar 

  • Axelsson-Olsson D, Waldenström J, Broman T, Olsen B, Holmberg M (2005) Protozoan Acanthamoeba polyphaga as a potential reservoir for Campylobacter jejuni. Appl Environ Microbiol 71:987–992

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bachère E, Gueguen Y, Gonzalez M, De Lorgeril J, Garnier J, Romestand B (2004) Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas. Immunol Rev 198:149–168

    PubMed  Google Scholar 

  • Baldursson S, Karanis P (2011) Waterborne transmission of protozoan parasites: review of worldwide outbreaks: an update 2004–2010. Water Res 45:6603–6614

    PubMed  CAS  Google Scholar 

  • Bari SM, Roky MK, Mohiuddin M, Kamruzzaman M, Mekalanos JJ, Faruque SM (2013) Quorum-sensing autoinducers resuscitate dormant Vibrio cholerae in environmental water samples. Proc Natl Acad Sci USA 110:9926–9931

    PubMed  CAS  PubMed Central  Google Scholar 

  • Barker J, Brown MRW (1994) Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140:1253–1259

    PubMed  CAS  Google Scholar 

  • Batabyal P, Einsporn MH, Mookerjee S, Palit A, Neogi SB, Nair GB, Lara RJ (2014) Influence of hydrologic and anthropogenic factors on the abundance variability of enteropathogens in the Ganges estuary, a cholera endemic region. Sci Total Environ 472:154–161

    PubMed  CAS  Google Scholar 

  • Bhunia R, Ghosh S (2011) Waterborne cholera outbreak following cyclone Aila in Sundarban area of West Bengal, India, 2009. Trans R Soc Trop Med Hyg 105:214–219

    PubMed  Google Scholar 

  • Blackburn N, Fenchel T, Mitchell J (1998) Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256

    PubMed  CAS  Google Scholar 

  • Blackwell KD, Oliver JD (2008) The ecology of Vibrio vulnificus, Vibrio cholerae, and Vibrio parahaemolyticus in North Carolina estuaries. J Microbiol 46:146–153

    PubMed  Google Scholar 

  • Blokesch M (2012) A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae. Mob Genet Elem 2:224–227

    Google Scholar 

  • Boyd EF, Moyer KE, Shi L, Waldor MK (2000) Infectious CTXPhi and the vibrio pathogenicity island prophage in Vibrio mimicus: evidence for recent horizontal transfer between V. mimicus and V. cholerae. Infect Immun 68:1507–1513

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brandl MT, Rosenthal BM, Haxo AF, Berk SG (2005) Enhanced survival of Salmonella enterica in vesicles released by a soilborne Tetrahymena species. Appl Environ Microbiol 71:1562–1569

    PubMed  CAS  PubMed Central  Google Scholar 

  • Broza M, Gancz H, Halpern M, Kashi Y (2005) Adult non-biting midges: possible windborne carriers of Vibrio cholerae non-O1 non-O139. Environ Microbiol 7:576–585

    PubMed  Google Scholar 

  • Brümmer IH, Fehr W, Wagner-Döbler I (2000) Biofilm community structure in polluted rivers: abundance of dominant phylogenetic groups over a complete annual cycle. Appl Environ Microbiol 66:3078–3082

    PubMed  PubMed Central  Google Scholar 

  • Cairncross S, Muller R, Zagaria N (2002) Dracunculiasis (Guinea worm disease) and the eradication initiative. Clin Microbiol Rev 15:223–246

    PubMed  PubMed Central  Google Scholar 

  • Camper AK, Jones WL, Hayes JT (1996) Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms. Appl Environ Microbiol 62:4014–4018

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cantet F, Hervio-Heath D, Caro A, Le Mennec C, Monteil C, Quéméré C, Jolivet-Gougeon A, Colwell RR, Monfort P (2013) Quantification of Vibrio parahaemolyticus, V. vulnificus, and V. cholerae in French Mediterranean coastal lagoons. Res Microbiol 164:867–874

    PubMed  CAS  PubMed Central  Google Scholar 

  • Center for Disease Control (CDC) (2014a) http://www.cdc.gov/legionella/fastfacts.html. Accessed 9 Aug 2014

  • Center for Disease Control (CDC) (2014b) http://www.cdc.gov/HAI/organisms/klebsiella/klebsiella.html. Accessed 9 Aug 2014

  • Center for Disease Control (CDC) (2014c) http://www.cdc.gov/parasites/az/index.html. Accessed 9 Aug 2014

  • Chakraborty S, Nair GB, Shinoda S (1997) Pathogenic vibrios in the natural aquatic environment. Rev Environ Health 12:63–80

    PubMed  CAS  Google Scholar 

  • Chandran A, Hatha MAA (2005) Relative survival of Escherichia coli and Salmonella typhimurium in a tropical estuary. Water Res 39:1397–1403

    PubMed  CAS  Google Scholar 

  • Chang SL, Woodward RL, Kabler PW (1960) Survey of free-living nematodes and amoebas in municipal supplies. J Am Water Works Assoc 52:613–618

    Google Scholar 

  • Chiavelli DA, Marsh JW, Taylor RK (2001) The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton. Appl Environ Microbiol 67:3220–3225

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY, Haley BJ, Taviani E, Jeon YS, Kim DW, Lee JH, Brettin TS, Bruce DC, Challacombe JF, Detter JC, Han CS, Munk AC, Chertkov O, Meincke L, Saunders E, Walters RA, Huq A, Nair GB, Colwell RR (2009) Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. Proc Natl Acad Sci USA 106:15442–15447

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cinar HN, Kothary M, Datta AR, Tall BD, Sprando R, Bilecen K, Yildiz F, McCardell B (2010) Vibrio cholerae hemolysin is required for lethality, developmental delay, and intestinal vacuolation in Caenorhabditis elegans. PLoS One 5:e11558

    PubMed  PubMed Central  Google Scholar 

  • Colwell RR, Huq A, Islam MS, Aziz KMA, Yunus M, Khan NH, Mahmud A, Sack RB, Nair GB, Chakraborty J, Sack DA, Russek-Cohen E (2003) Reduction of cholera in Bangladeshi villages by simple filtration. Proc Natl Acad Sci USA 100:1051–1055

    PubMed  CAS  PubMed Central  Google Scholar 

  • Connelly SJ, Wolyniak EA, Dieter KL, Williamson CE, Jellison KL (2007) Impact of zooplankton grazing on the excystation, viability, and infectivity of the protozoan pathogens Cryptosporidium parvum and Giardia Lamblia. Appl Environ Microbiol 73:7277–7282

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dale P (2008) Assessing impacts of habitat modification on a subtropical salt marsh: 20 years of monitoring. Wetlands Ecol Manag 16:77–87

    Google Scholar 

  • de Magny GC, Murtugudde R, Sapiano MR, Nizam A, Brown CW, Busalacchi AJ, Yunus M, Nair GB, Gil AI, Lanata CF, Calkins J, Manna B, Rajendran K, Bhattacharya MK, Huq A, Sack RB, Colwell RR (2008) Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci USA 105:17676–17681

    Google Scholar 

  • de Magny GC, Mozumder PK, Grim CJ, Hasan NA, Naser MN, Alam M, Sack RB, Huq A, Colwell RR (2011) Role of zooplankton diversity in Vibrio cholerae population dynamics and in the incidence of cholera in the Bangladesh Sundarbans. Appl Environ Microbiol 77:6125–6132

    PubMed  PubMed Central  Google Scholar 

  • Dhakal BK, Lee W, Kim YR, Choy HE, Ahnn J, Rhee JH (2006) Caenorhabditis elegans as a simple model host for Vibrio vulnificus infection. Biochem Biophys Res Commun 346:751–757

    PubMed  CAS  Google Scholar 

  • Erken M, Weitere M, Kjelleberg S, McDougald D (2011) In situ grazing resistance of Vibrio cholerae in the marine environment. FEMS Microbiol Ecol 76:504–512

    PubMed  CAS  Google Scholar 

  • Faruque SM, Asadulghani, Rahman MM, Waldor MK, Sack DA (2000) Sunlight-induced propagation of the lysogenic phage encoding cholera toxin. Infect Immun 68:4795–4801

    PubMed  CAS  PubMed Central  Google Scholar 

  • Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ (2005) Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 102:1702–1707

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fayer R, Trout JM, Walsh E, Cole R (2000) Rotifers ingest oocysts of Cryptosporidium parvum. J Eukaryot Microbiol 47:161–163

    PubMed  CAS  Google Scholar 

  • Garcia-Aljaro C, Muniesa M, Blanco JE, Blanco M, Blanco J, Jofre J, Blanch AR (2005) Characterization of Shiga toxinproducing Escherichia coli isolated from aquatic environments. FEMS Microbiol Lett 246:55–65

    PubMed  CAS  Google Scholar 

  • Garriss G, Waldor MK, Burrus V (2009) Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet 5(12):e1000775

    PubMed  PubMed Central  Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 78:1136–1147

    PubMed  CAS  PubMed Central  Google Scholar 

  • Greub G, Raoult D (2004) Microorganisms resistant to freeliving amoebae. Clin Microbiol Rev 17:413–433

    PubMed  PubMed Central  Google Scholar 

  • Griffin LF, Knight JM (2012) A review of the role of fish as biological control agents of disease vector mosquitoes in mangrove forests: reducing human health risks while reducing environmental risk. Wetl Ecol Manag 20:243–252

    Google Scholar 

  • Grimes DJ, Johnson CN, Dillon KS, Flowers AR, Noriea NF 3rd, Berutti T (2009) What genomic sequence information has revealed about Vibrio ecology in the ocean: a review. Microb Ecol 58:447–460

    PubMed  CAS  Google Scholar 

  • Gu YG, Xia LF, Li ZW, Zhao MF, Yang HY, Luo QY (2001) Study on schistosomiasis control strategy in Ertan Reservoir. Chin J Parasitol Parasit Dis 19:225–228

    CAS  Google Scholar 

  • Gulig PA, Danbara H, Guiney DG, Lax AJ, Norel F, Rhen M (1993) Molecular analysis of spv virulence genes of the Salmonella virulence plasmids. Mol Microbiol 7:823–830

    Google Scholar 

  • Halpern M, Broza YB, Mittler S, Arakawa E, Broza M (2004) Chironomid egg masses as a natural reservoir of Vibrio cholerae non-O1 and non-O139 in freshwater habitats. Microb Ecol 47:341–349

    PubMed  CAS  Google Scholar 

  • Halpern M, Landsberg O, Raats D, Rosenberg E (2007) Culturable and VBNC Vibrio cholerae: interactions with chironomid egg masses and their bacterial population. Microb Ecol 53:285–293

    PubMed  CAS  Google Scholar 

  • Hara-Kudo Y, Saito S, Ohtsuka K, Yamasaki S, Yahiro S, Nishio T, Iwade Y, Otomo Y, Konuma H, Tanaka H, Nakagawa H, Sugiyama K, Sugita-Konishi Y, Kumagai S (2012) Characteristics of a sharp decrease in Vibrio parahaemolyticus infections and seafood contamination in Japan. Int J Food Microbiol 157:95–101

    PubMed  Google Scholar 

  • Heidelberg JF, Heidelberg KB, Colwell RR (2002) Bacteria of the gamma-subclass proteobacteria associated with zooplankton in Chesapeake Bay. Appl Environ Microbiol 68:5498–5507

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hilton T, Rosche T, Froelich B, Smith B, Oliver J (2006) Capsular polysaccharide phase variation in Vibrio vulnificus. Appl Environ Microbiol 72:6986–6993

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hlady WG, Klontz KC (1996) The epidemiology of Vibrio infections in Florida, 1981–1993. J Infect Dis 173:1176–1183

    PubMed  CAS  Google Scholar 

  • Houot L, Chang S, Pickering BS, Absalon C, Watnick PI (2010) The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J Bacteriol 192:3055–3067

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huamanchay O, Genzlinger L, Iglesias M, Ortega YR (2004) Ingestion of Cryptosporidium oocysts by Caenorhabditis elegans. J Parasitol 90:1176–1178

    PubMed  Google Scholar 

  • Huq A, West PA, Small EB, Huq MI, Colwell RR (1984) Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420–424

    PubMed  CAS  PubMed Central  Google Scholar 

  • Huq A, Sack RB, Nizam A, Longini IM, Nair GB, Ali A, Morris JG Jr, Khan MN, Siddique AK, Yunus M, Albert MJ, Sack DA, Colwell RR (2005) Critical factors influencing the occurrence of Vibrio cholerae in the environment of Bangladesh. Appl Environ Microbiol 71:4645–4654

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ihssen J, Grasselli E, Bassin C, François P, Piffaretti JC, Köster W, Schrenzel J, Egli T (2007) Comparative genomic hybridization and physiological characterization of environmental isolates indicate that significant (eco-) physiological properties are highly conserved in the species Escherichia coli. Microbiology 153:2052–2066

    PubMed  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007, the Fourth Assessment Report (AR4). Intergovernmental Panel on Climate Change. http://ipcc.ch/publications_and_data/ar4/syr/en/main.html. Accessed 9 Aug 2014

  • Ishii S, Sadowsky M (2008) Escherichia coli in the environment: implications for water quality and human health. Microbes Environ 23:101–108

    PubMed  Google Scholar 

  • Jahid IK, Silva AJ, Benitez JA (2006) Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol 72:7043–7049

    PubMed  CAS  PubMed Central  Google Scholar 

  • Janda JM, Abbott SL (2010) The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev 23:35–73

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jennings ME, Quick LN, Ubol N, Shrom S, Dollahon N, Wilson JW (2012) Characterization of Salmonella type III secretion hyper-activity which results in biofilm-like cell aggregation. PLoS One 7(3):e33080

    PubMed  CAS  PubMed Central  Google Scholar 

  • Johnson PTJ, Carpenter SR (2008) Influence of eutrophication on disease in aquatic ecosystems: patterns, processes, and predictions. In: Ostfeld R, Keesing F, Eviner V (eds) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton, pp 71–99

    Google Scholar 

  • Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, Hasan NA, Huq A, Noriea NF 3rd, Grimes DJ, Colwell RR (2012) Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington (United States). Appl Environ Microbiol 78:7249–7257

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jones MK, Oliver JD (2009) Vibrio vulnificus: disease and pathogenesis. Infect Immun 77:1723–1733

    PubMed  CAS  PubMed Central  Google Scholar 

  • Julie D, Solen L, Antoine V, Jaufrey C, Annick D, Dominique HH (2010) Ecology of pathogenic and non-pathogenic Vibrio parahaemolyticus on the French Atlantic coast. Effects of temperature, salinity, turbidity and chlorophyll a. Environ Microbiol 12:929–937

    PubMed  CAS  Google Scholar 

  • Kamruzzaman M, Udden SM, Cameron DE, Calderwood SB, Nair GB, Mekalanos JJ, Faruque SM (2010) Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc Natl Acad Sci USA 107:1588–1593

    PubMed  CAS  PubMed Central  Google Scholar 

  • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kevin BL, Deirdre L (2005) Population-based laboratory surveillance for Giardia sp. and Cryptosporidium sp. infections in a large Canadian health region. BMC Infect Dis 5:72

    Google Scholar 

  • King CH, Shotts EB Jr, Wooley RE, Porter KG (1988) Survival of coliforms and bacterial pathogens within protozoa during chlorination. Appl Environ Microbiol 54:3023–3033

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kirov SM, Castrisios M, Shaw JG (2004) Aeromonas flagella (polar and lateral) are enterocyte adhesins that contribute to biofilm formation on surfaces. Infect Immun 72:1939–1945

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kirschner AK, Schauer S, Steinberger B, Wilhartitz I, Grim CJ, Huq A, Colwell RR, Herzig A, Sommer R (2011) Interaction of Vibrio cholerae non-O1/non-O139 with copepods, cladocerans and competing bacteria in the large alkaline lake Neusiedler See, Austria. Microb Ecol 61:496–506

    PubMed  PubMed Central  Google Scholar 

  • Kühn I, Albert MJ, Ansaruzzaman M, Bhuiyan NA, Alabi SA, Huys G, Islam MS, Janssen P, Kersters K, Neogi PKB, Mollby R (1997) Characterization of Aeromonas spp. isolated from humans with diarrhea, from healthy controls and from surface water in Bangladesh. J Clin Microbiol 35:369–373

    PubMed  PubMed Central  Google Scholar 

  • Kuiper MW, Wullings BA, Akkermans AD, Beumer RR, Van der Kooij D (2004) Intracellular proliferation of Legionella pneumophila in Hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol 70:6826–6833

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lara RJ, Neogi SB, Islam MS, Mahmud ZH, Yamasaki S, Nair GB (2009) Influence of catastrophic climatic events and human waste on Vibrio distribution in the Karnaphuli estuary, Bangladesh. EcoHealth 6:279–286

    PubMed  Google Scholar 

  • Lara RJ, Neogi SB, Islam MS, Mahmud ZH, Islam S, Paul D, Demoz BB, Yamasaki S, Nair GB, Kattner G (2011) Vibrio cholerae in waters of the Sunderban mangrove: relationship with biogeochemical parameters and chitin in seston size fractions. Wetl Ecol Manag 19:109–119

    Google Scholar 

  • Lara RJ, Islam, Yamasaki S, Neogi SB, Nair GB (2012) Aquatic ecosystems, human health, and ecohydrology. In: McLusky D, Wolanski E (eds) Treatise on estuarine and coastal science, vol Vol. 10 (section 15). Academic Press, Elsevier Inc., London, pp 1–33

    Google Scholar 

  • Lin J, Smith MP, Chapin KC, Baik HS, Bennett GN, Foster JW (1996) Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol 62:3094–3100

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lindsay MDA, Jardine A, Johansen CA, Wright AE, Harrington SA, Weinstein P (2007) Mosquito (Diptera: Culicidae) fauna in inland areas of south-west Western Australia. Aust J Entomol 46:60–64

    Google Scholar 

  • Lindsay SW, Hole DG, Hutchinson RA, Richards SA, Willis SG (2010) Assessing the future threat from vivax malaria in the United Kingdom using two markedly different modeling approaches. J Malaria 9:70. doi:10.1186/1475-2875-9-70

    Google Scholar 

  • Lipp EK, Huq A, Colwell RR (2002) Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev 15:757–770

    PubMed  PubMed Central  Google Scholar 

  • Liverman AD, Cheng HC, Trosky JE, Leung DW, Yarbrough ML, Burdette DL, Rosen MK, Orth K (2007) Arp2/3-independent assembly of actin by Vibrio type III effector VopL. Proc Natl Acad Sci USA 104:17117–17122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lizárraga-Partida ML, Mendez-Gómez E, Rivas-Montaño AM, Vargas-Hernández E, Portillo-López A, González-Ramírez AR, Huq A, Colwell RR (2009) Association of Vibrio cholerae with plankton in coastal areas of Mexico. Environ Microbiol 11:201–208

    PubMed  Google Scholar 

  • Lobitz B, Beck L, Huq A, Wood B, Fuchs G, Faruque AS, Colwell R (2000) Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci USA 97:1438–1443

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ly TMC, Müller HE (1990) Interactions of Listeria monocytogenes, Listeria seeligeri, and Listeria innocua with protozoans. J Gen Appl Microbiol 36:143–150

    Google Scholar 

  • Macek M, Carlos G, Memije P, Ramãrez P (1997) Ciliate-Vibrio cholerae interactions within a microbial loop: an experimental study. Aquat Microb Ecol 13:257–266

    Google Scholar 

  • Mahmud ZH, Neogi SB, Kassu A, Mai Huong BT, Jahid IK, Islam MS, Ota F (2008) Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiol Ecol 64:209–218

    PubMed  CAS  Google Scholar 

  • Mansson M, Gram L, Larsen TO (2011) Production of bioactive secondary metabolites by marine vibrionaceae. Mar Drugs 9:1440–1468

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martïnez Pérez ME, Macek M, Castro Galván MT (2004) Do protozoa control the elimination of Vibrio cholerae in brackish water? Int Rev Hydrobiol 89:215–227

    Google Scholar 

  • Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S (2005) Biofilm formation and phenotypic variation enhance predation driven persistence of Vibrio cholerae. Proc Nat Acad Sci USA 102:16819–16824

    PubMed  CAS  PubMed Central  Google Scholar 

  • Matz C, Nouri B, McCarter L, Martinez-Urtaza J (2011) Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists. PLoS One 6:e20275

    PubMed  CAS  PubMed Central  Google Scholar 

  • Maugeri TL, Carbone M, Fera MT, Irrera GP, Gugliandolo C (2004) Distribution of potentially pathogenic bacteria as free living and plankton associated in a marine coastal zone. J Appl Microbiol 97:354–361

    PubMed  CAS  Google Scholar 

  • McCarter LL (2004) Dual flagellar systems enable motility under different circumstances. J Mol Microbiol Biotechnol 7:18–29

    PubMed  CAS  Google Scholar 

  • Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827

    PubMed  CAS  Google Scholar 

  • Miller WA, Atwill ER, Gardner IA, Miller MA, Fritz HM, Hedrick RP, Melli AC, Barnes NM, Conrad PA (2005) Clams (Corbicula fluminea) as bioindicators of fecal contamination with Cryptosporidium and Giardia spp. in freshwater ecosystems in California. Int J Parasitol 35:673–684

    PubMed  Google Scholar 

  • Miyata ST, Kitaoka M, Brooks TM, McAuley SB, Pukatzki S (2011) Vibrio cholerae requires the type VI secretion system virulence factor VasX to kill Dictyostelium discoideum. Infect Immun 79:2941–2949

    PubMed  CAS  PubMed Central  Google Scholar 

  • Möller EF, Riemann L, Söndergaard M (2007) Bacteria associated with copepods: abundance, activity and community composition. Aquat Microb Ecol 47:99–106

    Google Scholar 

  • Mookerjee S, Jaiswal A, Batabyal P, Einsporn MH, Lara RJ, Sarkar B, Neogi SB, Palit A (2014) Seasonal dynamics of Vibrio cholerae and its phages in riverine ecosystem of Gangetic West Bengal: cholera paradigm. DOI, Environ Monit Assess. doi:10.1007/s10661-014-3851-1

    Google Scholar 

  • Moreira S, Brown A, Ha R, Iserhoff K, Yim M, Yang J, Liao B, Pszczolko E, Qin W, Leung KT (2012) Persistence of Escherichia coli in freshwater periphyton: biofilm-forming capacity as a selective advantage. FEMS Microbiol Ecol 79:608–618

    PubMed  CAS  Google Scholar 

  • Morita M, Yamamoto S, Hiyoshi H, Kodama T, Okura M, Arakawa E, Alam M, Ohnishi M, Izumiya H, Watanabe H (2013) Horizontal gene transfer of a genetic island encoding a type III secretion system distributed in Vibrio cholerae. Microbiol Immunol 57:334–339

    PubMed  CAS  Google Scholar 

  • Muniesa M, Jofre J, García-Aljaro C, Blanch AR (2006) Occurrence of Escherichia coli O157:H7 and other enterohemorrhagic Escherichia coli in the environment. Environ Sci Technol 40:7141–7149

    PubMed  CAS  Google Scholar 

  • Murga R, Forster TS, Brown E, Pruckler JM, Fields BS, Donlan RM (2001) Role of biofilms in the survival of Legionella pneumophila in a model potable-water system. Microbiology 147:3121–3126

    PubMed  CAS  Google Scholar 

  • Nair GB, Ramamurthy T, Bhattacharya SK, Dutta B, Takeda Y, Sack DA (2007) Global dissemination of Vibrio parahaemolyticus serotype O3:K6 and its serovariants. Clin Microbiol Rev 20:39–48

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nair GB, Ramamurthy T, Bhattacharya MK, Krishnan T, Ganguly S, Saha DR, Rajendran K, Manna B, Ghosh M, Okamoto K, Takeda Y (2010) Emerging trends in the etiology of enteric pathogens as evidenced from an active surveillance of hospitalized diarrhoeal patients in Kolkata, India. Gut Pathog 2:4

    PubMed  PubMed Central  Google Scholar 

  • Nataro JP, Kaper JB (1998) Diarrhoeagenic Escherichia coli. Clin Microbiol Rev 11:142–201

    PubMed  CAS  PubMed Central  Google Scholar 

  • Natrah FM, Defoirdt T, Sorgeloos P, Bossier P (2011) Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture. Mar Biotechnol (NY) 13:109–126

    CAS  Google Scholar 

  • Neil K, Berkelman R (2008) Increasing incidences of legionellosis in the United States, 1990–2005: changing epidemiologic trends. Clin Infect Dis 47:591–599

    PubMed  Google Scholar 

  • Neogi SB, Chowdhury N, Asakura M, Hinenoya A, Haldar S, Saidi SM, Kogure K, Lara RJ, Yamasaki S (2010) A highly sensitive and specific multiplex PCR assay for simultaneous detection of Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus. Lett Appl Microbiol 51:293–300

    PubMed  CAS  Google Scholar 

  • Neogi SB, Koch BP, Schmitt-kopplin P, Pohl C, Kattner G, Yamasaki S, Lara R (2011) Biogeochemical controls on the bacterial populations in the eastern Atlantic Ocean. Biogeosciences 8:3747–3759

    CAS  Google Scholar 

  • Neogi SB, Islam MS, Nair GB, Yamasaki S, Lara R (2012) Occurrence and distribution of plankton-associated and free-living toxigenic Vibrio cholerae in a tropical estuary of a cholera endemic zone. Wetl Ecol Manag 20:271–285

    Google Scholar 

  • Nishiyama S, Suzuki D, Itoh Y, Suzuki K, Tajima H, Hyakutake A, Homma M, Butler-Wu SM, Camilli A, Kawagishi I (2012) Mlp24 (McpX) of Vibrio cholerae implicated in pathogenicity functions as a chemoreceptor for multiple amino acids. Infect Immun 80:3170–3178

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nowosad P, Kuczynska-Kippen N, Slodkowicz-Kowalska A, Majewska AC, Graczyk TK (2007) The use of rotifers in detecting protozoan parasite infections in recreational lakes. Aquat Ecol 41:47–54

    Google Scholar 

  • Oliver JD (2005) The viable but non-culturable state in bacteria. J Microbiol 43:93–100

    PubMed  Google Scholar 

  • Ostera GR, Gostin LO (2011) Biosafety concerns involving genetically modified mosquitoes to combat malaria and dengue in developing countries. JAMA 305:930–931

    PubMed  CAS  Google Scholar 

  • Paranjpye RN, Johnson AB, Baxter AE, Strom MS (2007) Role of type IV pilins in persistence of Vibrio vulnificus in Crassostrea virginica oysters. Appl Environ Microbiol 73:5041–5044

    PubMed  CAS  PubMed Central  Google Scholar 

  • Parsot C, Taxman E, Mekalanos JJ (1991) ToxR regulates the production of lipoproteins and the expression of serum resistance in Vibrio cholerae. Proc Natl Acad Sci USA 88:1641–1645

    PubMed  CAS  PubMed Central  Google Scholar 

  • Paul JH, Thurmond JM, Frischer ME, Cannon JP (1992) Intergeneric natural plasmid transformation between E. coli and a marine Vibrio species. Mol Ecol 1:37–46

    PubMed  CAS  Google Scholar 

  • Peleg AY, Seifert H, Paterson DL (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 21:538–582

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pham HV, Doan HT, Phan TT, Minh NN (2011) Ecological factors associated with dengue fever in a central highlands Province, Vietnam. BMC Infect Dis 11:172

    PubMed  PubMed Central  Google Scholar 

  • Pruess A, Day K, Fewtrell L, Bartram J (2002) Estimating the global burden of disease from water, sanitation and hygiene at a global level. Environ Health Perspect 110:537–542

    Google Scholar 

  • Pruzzo C, Vezzulli L, Colwell RR (2008) Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 10:1400–1410

    PubMed  CAS  Google Scholar 

  • Ravva SV, Korn A (2007) Extractable organic compounds and nutrients in wastewater from dairy lagoons influence the growth and survival of Escherichia coli O157:H7. Appl Environ Microbiol 73:2191–2198

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reguera G, Kolter R (2005) Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187:3551–3555

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ren C, Hu C, Jiang X, Sun H, Zhao Z, Chen C, Luo P (2013) Distribution and pathogenic relationship of virulence associated genes among Vibrio alginolyticus from the mariculture systems. Mol Cell Probes 27:164–168

    PubMed  CAS  Google Scholar 

  • Rochlin I, James-Pirri M-J, Adamowicz SC, Wolfe RJ, Capotosto P, Dempsey ME, Iwanejko T, Ninivaggi DV (2012) Integrated marsh management (IMM): a new perspective on mosquito control and best management practices for salt marsh restoration. Wetl Ecol Manag 20:219–232

    Google Scholar 

  • Rosenberg E, Ben-Haim Y (2002) Microbial diseases of corals and global warming. Environ Microbiol 4:318–326

    PubMed  Google Scholar 

  • Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sack RB, Siddique AK, Longini IM Jr, Nizam A, Yunus M, Islam MS, Morris JG Jr, Ali A, Huq A, Nair GB, Qadri F, Faruque SM, Sack DA, Colwell RR (2003) A 4-year study of the epidemiology of Vibrio cholerae in four rural areas of Bangladesh. J Infect Dis 187:96–101

    PubMed  Google Scholar 

  • Sánchez-Vargas FM, Abu-El-Haija MA, Gómez-Duarte OG (2011) Salmonella infections: an update on epidemiology, management, and prevention. Travel Med Infect Dis 9:263–277

    PubMed  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM (2011) Foodborne illness acquired in the United States: major pathogens. Emerg Infect Dis 17:7–15

    PubMed  PubMed Central  Google Scholar 

  • Schallenberg M, Bremer PJ, Henkel S, Launhardt A, Burns CW (2005) Survival of Campylobacter jejuni in water: effect of grazing by the freshwater crustacean Daphnia carinata (Cladocera). Appl Environ Microbiol 71:5085–5088

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A (2012) Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog 8:e1002917

    PubMed  CAS  PubMed Central  Google Scholar 

  • Seitz P, Pezeshgi Modarres H, Borgeaud S, Bulushev RD, Steinbock LJ, Radenovic A, Dal Peraro M, Blokesch M (2014) ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLoS Genet 10:e1004066

    PubMed  PubMed Central  Google Scholar 

  • Senderovich Y, Halpern M (2013) The protective role of endogenous bacterial communities in chironomid egg masses and larvae. ISME J 7:2147–2158

    PubMed  CAS  Google Scholar 

  • Senderovich Y, Gershtein Y, Halewa E, Halpern M (2008) Vibrio cholerae and Aeromonas: do they share a mutual host? ISME J 2:276–283

    PubMed  CAS  Google Scholar 

  • Senoh M, Ghosh-Banerjee J, Ramamurthy T, Colwell RR, Miyoshi S, Nair GB, Takeda Y (2012) Conversion of viable but nonculturable enteric bacteria to culturable by co-culture with eukaryotic cells. Microbiol Immunol 56:342–345

    PubMed  CAS  Google Scholar 

  • Shinoda S, Miyoshi S-I (2011) Proteases produced by vibrios. Biocontrol Sci 16:1–11

    PubMed  CAS  Google Scholar 

  • Sinclair JL, Alexander M (1984) Role of resistance to starvation in bacterial survival in sewage and lake water. Appl Environ Microbiol 48:410–415

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sinton LW, Hall CH, Lynch PA, Davies-Colley RJ (2002) Sunlight inactivation of faecal indicator bacteria and bacteriophages from waste stabilisation pond effluent in fresh and saline waters. Appl Environ Microbiol 68:1122–1131

    PubMed  CAS  PubMed Central  Google Scholar 

  • Skorupski K, Taylor RK (1997) Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol Microbiol 25:1003–1009

    PubMed  CAS  Google Scholar 

  • Snelling WJ, McKenna JP, Lecky DM, Dooley JSG (2005) Survival of Campylobacter jejuni in waterborne protozoa. Appl Environ Microbiol 71:5560–5571

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stewart JR, Gast RJ, Fujioka RS, Solo-Gabriele HM, Meschke JS, Amaral-Zettler LA, Del Castillo E, Polz MF, Collier TK, Strom MS, Sinigalliano CD, Moeller PD, Holland AF (2008) The coastal environment and human health: microbial indicators, pathogens, sentinels and reservoirs. Environ Health 7(Suppl 2):S3. doi:10.1186/1476-069X-7-S2-S3

    PubMed  PubMed Central  Google Scholar 

  • Stewart MK, Cummings LA, Johnson ML, Berezow AB, Cookson BT (2011) Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response. Proc Natl Acad Sci USA 108:20742–20747

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stocker R, Seymour JR (2012) Ecology and physics of bacterial chemotaxis in the ocean. Microbiol Mol Biol Rev 76:792–812

    PubMed  CAS  PubMed Central  Google Scholar 

  • Stott R, May E, Matsushita E, Warren A (2001) Protozoan predation as a mechanism for the removal of Cryptosporidium oocysts from wastewaters in constructed wetlands. Water Sci Technol 44:191–198

    PubMed  CAS  Google Scholar 

  • Strateva T, Yordanov D (2009) Pseudomonas aeruginosa: a phenomenon of bacterial resistance. J Med Microbiol 58:1133–1148

    PubMed  CAS  Google Scholar 

  • Sun F, Chen J, Zhong L, Zhang XH, Wang R, Guo Q, Dong Y (2008) Characterization and virulence retention of viable but nonculturable Vibrio harveyi. FEMS Microbiol Ecol 64:37–44

    PubMed  CAS  Google Scholar 

  • Tamplin ML, Gauzens A, Huq A, Sack DA, Colwell RR (1990) Attachment of Vibrio cholerae serogroup-O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:1977–1980

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tang KW (2005) Copepods as microbial hotspots in the ocean effects of host feeding activities on attached bacteria. Aquat Microb Ecol 38:31–40

    Google Scholar 

  • Tezcan-Merdol D, Ljungström M, Winiecka-Krusnell J, Linder E, Engstrand L, Rhen M (2004) Uptake and replication of Salmonella enterica in Acanthamoeba rhysodes. Appl Environ Microbiol 70:3706–3714

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson FL, Iida T, Swings J (2004) Biodiversity of vibrios. Microbiol Mol Biol Rev 68:403–431

    PubMed  CAS  PubMed Central  Google Scholar 

  • Thompson JA, Liu M, Helaine S, Holden DW (2011) Contribution of the PhoP/Q regulon to survival and replication of Salmonella enterica serovar Typhimurium in macrophages. Microbiology 157:2084–2093

    PubMed  CAS  PubMed Central  Google Scholar 

  • Trosky JE, Mukherjee S, Burdette DL, Roberts M, McCarter L, Siegel RM, Orth K (2004) Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus. J Biol Chem 279:51953–51957

    PubMed  CAS  Google Scholar 

  • Trout JM, Walsh EJ, Fayer R (2002) Rotifers ingest Giardia cysts. J Parasitol 88:1038–1040

    PubMed  CAS  Google Scholar 

  • Tuševljak N, Rajić A, Waddell L, Dutil L, Cernicchiaro N, Greig J, Wilhelm BJ, Wilkins W, Totton S, Uhland FC, Avery B, McEwen SA (2012) Prevalence of zoonotic bacteria in wild and farmed aquatic species and seafood: a scoping study, systematic review, and meta-analysis of published research. Foodborne Pathog Dis 9:487–497

    PubMed  Google Scholar 

  • Udden SM, Zahid MS, Biswas K, Ahmad QS, Cravioto A, Nair GB, Mekalanos JJ, Faruque SM (2008) Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. Proc Natl Acad Sci USA 105:11951–11956

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vaitkevicius K, Lindmark B, Ou G, Song T, Toma C, Iwanaga M, Zhu J, Andersson A, Hammarström ML, Tuck S, Wai SN (2006) A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing. Proc Natl Acad Sci USA 103:9280–9285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valeru SP, Rompikuntal PK, Ishikawa T, Vaitkevicius K, Sjöling A, Dolganov N, Zhu J, Schoolnik G, Wai SN (2009) Role of melanin pigment in expression of Vibrio cholerae virulence factors. Infect Immun 77:935–942

    PubMed  CAS  PubMed Central  Google Scholar 

  • Valeru SP, Shanan S, Alossimi H, Saeed A, Sandström G, Abd H (2014) Lack of outer membrane protein A enhances the release of outer membrane vesicles and survival of Vibrio cholerae and suppresses viability of Acanthamoeba castellanii. Int J Microbiol 2014:610190. doi:10.1155/2014/610190

    PubMed  PubMed Central  Google Scholar 

  • Van Houdt R, Michiels CW (2005) Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156:626–633

    PubMed  Google Scholar 

  • Vezzulli L, Pezzati E, Moreno M, Fabiano M, Pane L, Pruzzo C, Vibrio Sea Consortium (2009) Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb Ecol 58:808–818

    Google Scholar 

  • Vezzulli L, Pruzzo C, Huq A, Colwell RR (2010) Environmental reservoirs of Vibrio cholerae and their role in cholera. Environ Microbiol Rep 2:27–33

    PubMed  Google Scholar 

  • Vital M, Hammes F, Egli T (2008) Escherichia coli O157 can grow in natural freshwater at low carbon concentrations. Environ Microbiol 10:2387–2396

    PubMed  CAS  Google Scholar 

  • Waldor MK, Tschäpe H, Mekalanos JJ (1996) A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:4157–4165

    PubMed  CAS  PubMed Central  Google Scholar 

  • Warriner K, Namvar A (2009) What is the hysteria with Listeria? Trends Food Sci Technol 20:245–254

    CAS  Google Scholar 

  • Watarai M, Sato T, Kobayashi M, Shimizu T, Yamasaki S, Tobe T, Sasakawa C, Takeda Y (1998) Identification and characterization of a newly isolated Shiga toxin 2-converting phage from Shiga toxin-producing Escherichia coli. Infect Immun 66:4100–4107

    PubMed  CAS  PubMed Central  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weigl S, Körner H, Petrusek A, Seda J, Wolinska J (2012) Natural distribution and co-infection patterns of microsporidia parasites in the Daphnia longispina complex. Parasitology 139:870–880

    PubMed  CAS  Google Scholar 

  • White-Ziegler CA, Davis TR (2009) Genome-wide identification of H-NS-controlled, temperature-regulated genes in Escherichia coli K-12. J Bacteriol 191:1106–1110

    PubMed  CAS  PubMed Central  Google Scholar 

  • WHO (2004) http://www.who.int/water_sanitation_health/publications/facts2004/en/. Accessed on 9 Aug 2014

  • WHO (2009) Dengue guidelines for diagnosis, treatment, prevention and control. World Health Organization, Geneva. ISBN 92-4-154787-1

    Google Scholar 

  • WHO (2014a) www.who.int/gho/epidemic_diseases/cholera/en/index.html. Accessed 9 Aug 2014

  • WHO (2014b) http://www.who.int/topics/filariasis/en/. Accessed 9 Aug 2014

  • WHO (2014c) http://www.who.int/mediacentre/factsheets/fs094/en/. Accessed 9 Aug 2014

  • Williams LA, Larock PA (1985) Temporal occurrence of Vibrio species and Aeromonas hydrophila in estuarine sediments. Appl Environ Microbiol 50:1490–1495

    PubMed  CAS  PubMed Central  Google Scholar 

  • Woodrow RJ, Howard JJ, White DJ (1995) Field trials with methoprene, temephos, and Bacillus thuringiensis serovar israelensis for the control of larval Culiseta melanura. J Am Mosq Control Assoc 11:424–427

    PubMed  CAS  Google Scholar 

  • Wright AC, Hill RT, Johnson JA, Roghman MC, Colwell RR, Morris JG Jr (1996) Distribution of Vibrio vulnificus in the Chesapeake Bay. Appl Environ Microbiol 62:717–724

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wyckoff EE, Payne SM (2011) The Vibrio cholerae VctPDGC system transports catechol siderophores and a siderophore-free iron ligand. Mol Microbiol 81:1446–1458

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yamasaki S, Asakura M, Shiramaru S, Neogi SB, Hinenoya A, Samosornsuk W, Shi L, Ramamurthy T (2010) Molecular epidemiology of Vibrio cholerae and campylobacters isolated in Asian countries. In: Tanaka K, Niki Y, Kokaze A (eds) Current topics of infectious diseases in Japan and Asia, Springer, Tokyo, pp 25–43

  • Yamasaki S, Asakura M, Neogi SB, Hinenoya A, Iwaoka E, Aoki S (2011) Inhibition of virulence potential of Vibrio cholerae by natural compounds. Ind J Med Res 133:232–239

    CAS  Google Scholar 

  • Yan H, Neogi SB, Mo Z, Guan W, Shen Z, Zhang S, Li L, Yamasaki S, Shi L, Zhong N (2010) Prevalence and characterization of antimicrobial resistance of foodborne Listeria monocytogenes isolates in Hebei province of Northern China, 2005–2007. Int J Food Microbiol 144:310–316

    PubMed  CAS  Google Scholar 

  • Yi M, Ling L, Neogi SB, Fan Y, Tang D, Yamasaki S, Shi L, Ye L (2014) Real time loop-mediated isothermal amplification using a portable fluorescence scanner for rapid and simple detection of Vibrio parahaemolyticus. Food Control 41:91–95

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful to the Monbukagakusho Scholarship Scheme, Ministry of Education, Culture, Sports, Science and Technology of Japan, German Academic Exchange Service (DAAD Grant no. A/03/21875) and National Institutes of Health, USA (Research Grant R01A139129-01) for promoting the interdisciplinary cooperation among the scientists of the Leibniz Center for Marine Tropical Ecology (ZMT), Bremen, Germany, and Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan and the International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b). The thoughtful guidance and enthusiasm received from Prodyot Kumar Basu Neogi, ex-scientist, icddr,b are greatly remembered. icddr,b is thankful to the Governments of Australia, Bangladesh, Canda, Sweden and the UK for providing core/unrestricted support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubén José Lara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neogi, S.B., Yamasaki, S., Alam, M. et al. The role of wetland microinvertebrates in spreading human diseases. Wetlands Ecol Manage 22, 469–491 (2014). https://doi.org/10.1007/s11273-014-9373-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11273-014-9373-3

Keywords

Navigation