Wetlands Ecology and Management

, Volume 20, Issue 6, pp 503–520 | Cite as

Development of ombrotrophic raised bogs in North-east Germany 17 years after the adoption of a protective program

  • André BönselEmail author
  • Anne-Gesine Sonneck
Original Paper


The present study reports on the development of ombrotrophic raised bogs in NE Germany after the adoption of a protective program with a focus on the hydrological and floristic changes in two simultaneously restored cut-over bogs as a reference for all other bogs. At the moment, four fifths of the bogs area is dominated by woody vegetation forms and <5 % is characterized by typical raised bog vegetation. The trend of increasing areas with woody vegetation forms and decreasing areas with vegetation typical for ombrotrophic raised bogs could not be prevented despite increasing the portion of revitalized areas. The reason for the negative developments is founded in the different types of raised bogs in NE Germany, which differ in regard to the historical lagg area and the original grown up raised peat body. This as well as the kind and intensity of anthropogenic use have significant implications for the possibilities of revitalization and protection. Except for those bogs where no peat remnants remain, the revitalization of cut-over raised bogs in NE Germany can succeed if an almost closed hydrological protection zone (HPZ which is equal to the historical lagg area) is established so that the gradient of entire lateral water flow between the higher lying peat remnant and the lower lying surrounding area is reduced. The attainment of a lateral water flow gradient comparable to the original state and of a water-saturated peat body succeeds in turn in the precondition for growing Sphagnum species, which readjust the system’s self regulation. The comparison of two bogs with similar preconditions concerning location, climate, and anthropogenic transformation has shown that an incompletely closed HPZ is one important reason for the decreasing portion of intact raised bogs with their typical vegetation. The influence of climate change on current hydrological and floristic changes in NE German ombrotrophic raised bogs has less influence on the success of revitalization than the historic grown type of bog and the intensity of anthropogenic use.


Climate change Cut-over raised bogs Water table Hydrological protection zone Lagg area Sphagnum 



Beside numerous assistants we are especially grateful to M. Runze for providing invaluable help in the design and implementation of the field experiments and Dr. H. Lange for providing statistical analyses. We further want to thank C. Skarbek for linguistic assistance. The Federal State of Mecklenburg-Western Pomerania financially supported the studies in the Grenztalmoor and the planning of bog revitalization. Special thanks are given to all of the members of the nature conservation authority, who made the restoration program possible and who applied for subsidies for embankments for re-wetting. The thoughtful comments of several anonymous reviewers greatly improved this manuscript. We further thank J. Matthes for thoughtful discussions concerning the raised bogs of MV during the last decades.

Conflict of interest



  1. Aue B (1991) Über die moorhydrologische Schutzfunktion des sekundären Randgehänges im Dosenmoor bei Neumünster (Schleswig-Holstein). Telma 21:157–174Google Scholar
  2. Blodau C (2002) Carbon cycling in peatlands—a review of processes and controls. Environ Rev 10:111–134CrossRefGoogle Scholar
  3. Bönsel A, Runze M (2005) Die Bedeutung Projektbegleitender Erfolgskontrollen bei der Revitalisierung eines Regenmoores durch wasserbauliche Maßnahmen. Natur und Landschaft 80:154–160Google Scholar
  4. Bönsel A, Sonneck A-G (2011) Effects of a hydrological protection zone on the restoration of raised bog: a case study from Northeast-Germany 1997–2008. Wetl Ecol Manag 19:183–194CrossRefGoogle Scholar
  5. Braun-Blanquet J (1964) Pflanzensoziologie. Springer, WienCrossRefGoogle Scholar
  6. Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F (2009) Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–339CrossRefGoogle Scholar
  7. Buttler A, Grosvernier P, Matthey Y (1998) Development of Sphagnum fallax diaspores on bare peat with implications for the restoration of cut-over bogs. J Appl Ecol 35:800–810CrossRefGoogle Scholar
  8. Campeau S, Rochefort L, Price JS (2004) On the use of shallow basins to restore cutover peatlands: plant establishment. Restor Ecol 12:471–482CrossRefGoogle Scholar
  9. Chirino C, Campeau S, Rochefort L (2006) Sphagnum establishment on bare peat: the importance of climatic variability and Sphagnum species richness. Appl Veg Sci 9:285–294CrossRefGoogle Scholar
  10. Clymo RS (1973) The growth of Sphagnum—some effects of environment. J Ecol 61:849–869CrossRefGoogle Scholar
  11. Clymo RS (1978) Model of peat bog growth. In: Ecological studies, vol 27. Springer, Berlin, pp 187–223Google Scholar
  12. Edom F, Münch A, Dittrich I, Keßler K, Peters R (2010) Hydromorphological analysis and water balance modelling of ombro- and mesotrophic peatlands. Adv Geosci 27:131–137CrossRefGoogle Scholar
  13. Eggelsmann R (1964) Zur Beziehung zwischen Grundwassergefälle und Durchlässigkeit. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft 2:121–127Google Scholar
  14. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze, GöttingenGoogle Scholar
  15. Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84CrossRefGoogle Scholar
  16. Farrick KK, Price JS (2009) Ericaceous shrubs on abandoned block-cut peatlands: implications for soil water availability and Sphagnum restoration. Ecohydrology 2:530–540CrossRefGoogle Scholar
  17. Frahm J-P, Frey W (2004) Moosflora. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  18. Gehl O (1952) Die Hochmoore Mecklenburgs, Nebst einem Beitrag zur Waldgeschichte des Küstenraumes zwischen Elbe und Oder. Geologie 2:4–99Google Scholar
  19. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol Appl 1:182–195CrossRefGoogle Scholar
  20. Gorham E, Janssens JA (1992) Concepts of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta Soc Bot Pol 61:7–20Google Scholar
  21. Gremer D, Michaelis D (2003) NSG „Rauhes Moor“im Grenztal. Greifswalder Geographische Arbeiten 30:43–47Google Scholar
  22. Gunnarsson U, Flodin L-A (2007) Vegetation shifts towards wetter site conditions on oceanic ombrotrophic bogs in southwestern Sweden. J Veg Sci 18:595–604CrossRefGoogle Scholar
  23. Gunnarsson U, Malmer N, Rydin H (2002) Dynamics or constancy in Sphagnum dominated mire ecosystems? A 40-year study. Ecography 25:685–704CrossRefGoogle Scholar
  24. Hayward PM, Clymo R (1982) Profiles of water content and pore size in Sphagnum and peat, and their relation to peat bog ecology. Proc R Soc Lond B 215:299–325CrossRefGoogle Scholar
  25. Hellmann G, von Elsner G, Henze H, Knoch K (1921) Klima-Atlas von Deutschland. Verlag von Dietrich Reimer (Ernst Vohsen), BerlinGoogle Scholar
  26. Ivanov KE (1981) Water movement in mirelands. Academic Press, LondonGoogle Scholar
  27. Jacob W (1959) Zur Petrologie des Hochmoores Göldenitz/Gubkow bei Rostock. Jb Geol u Paläont Abh 108:296–306Google Scholar
  28. Joosten JHJ (1995) Time to regenerate: long term perspectives of raised-bog regeneration with special emphasis on paleoecological studies. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 379–404Google Scholar
  29. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723CrossRefPubMedGoogle Scholar
  30. Koch FE (1849) Naturgeschichtliche Bemerkungen über das zwischen dem Trebel- und Recknitzthale gelegene Moor. Archiv des Vereins der Freunde der Naturgeschichte in Mecklenburg 3:147–159Google Scholar
  31. Kowatsch A (2007) Moorschutzkonzepte und -programme in Deutschland. Ein historischer und aktueller Überblick. Naturschutz und Landschaftsplanung 39:197–204Google Scholar
  32. Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawndown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802CrossRefGoogle Scholar
  33. Limpens J et al (2011) Climatic modifiers of the response to nitrogen deposition in peat-forming Sphagnum mosses: a meta-analysis. New Phytol 191:496–507CrossRefPubMedGoogle Scholar
  34. Malmer N, Svensson BM, Wallen B (1994) Interactions between Sphagnum mosses and field layer vascular plants in the development of peat-forming systems. Folia Geobot Phytotaxon 29:483–496Google Scholar
  35. Mauquoy D, Yeloff D (2008) Raised peat bog development and possible responses to environmental changes during the mid- to late-Holocene. Can the palaeoecological record be used to predict the nature and response of raised peat bogs to future climate change? Biodivs Conserv 17:2139–2151CrossRefGoogle Scholar
  36. Meade R (1992) Some early changes following the rewetting of a vegetated cutover peatland surface at Danes Moss, Cheshire, UK, and their relevance to conservation management. Biol Conserv 61:31–40CrossRefGoogle Scholar
  37. Morgan-Jones W, Poole JS, Goodall R (2005) Characterisation of hydrological protection zones at the margins of designated lowland raised peat bog sites. In: Joint Nature Conservation Committee Report no 365, Peterborough, pp 3–87Google Scholar
  38. Müller-Westermeier G, Kreis A, Dittmann E (1999) Klimaatlas Bundesrepublik Deutschland. Teil 1 Lufttemperatur, Niederschlagshöhe, Sonnenscheindauer. Deutscher Wetterdienst, Offenbach am MainGoogle Scholar
  39. Pfadenhauer J, Grootjans AP (1999) Wetland restoration in Central Europe: aims and methods. Appl Veg Sci 2:95–106CrossRefGoogle Scholar
  40. Precker A, Krbetschek M (1997) Die Regenmoore Mecklenburg-Vorpommern—Erste Auswertungen der Untersuchungen zum Regenmoor- Schutzprogramm des Landes Mecklenburg/Vorpommern. Telma 27:205–221Google Scholar
  41. Proctor MCF (1995) The ombrogenous bog environment. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 285–303Google Scholar
  42. Reinhard H (1963) Beitrag zur Entwicklungsgeschichte des Grenztales und seine Beziehung zur Litorinatransgression. Geologie 12:94–117Google Scholar
  43. Richert M, Dietrich O, Koppisch D, Roth S (2000) The influence of rewetting on vegetation development and decomposition in a degraded fen. Restor Ecol 8:186–195CrossRefGoogle Scholar
  44. Robroek BJM et al (2009) Sphagnum re-introduction in degraded peatlands: the effects of aggregation, species identity and water table. Basic Appl Ecol 10:697–706CrossRefGoogle Scholar
  45. Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3–20CrossRefGoogle Scholar
  46. Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2007) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3–20CrossRefGoogle Scholar
  47. Roulet NT (2000) Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada. Wetlands 20:605–615CrossRefGoogle Scholar
  48. Rydin H, McDonald AJ (1985) Tolerance of Sphagnum to water level. J Bryol 13:571–578Google Scholar
  49. Smolders AJP, Tomassen HBM, Van Mullekom M, Lamers LPM, Roelofs JGM (2003) Mechanisms involved in the re-establishment of Sphagnum-dominated vegetation in rewetted bog remnants. Wetl Ecol Manag 11:403–418CrossRefGoogle Scholar
  50. Strack M, Price JS (2009) Moisture controls on carbon dioxide dynamics of peat-Sphagnum monoliths. Ecohydrology 2:34–41CrossRefGoogle Scholar
  51. Succow M (1988) Landschaftsökologische Moorkunde. Gebrüder Borntraeger, BerlinGoogle Scholar
  52. Succow M, Jeschke L (1986) Moore in der Landschaft. Urania-Verlag, JenaGoogle Scholar
  53. Succow M, Joosten H (2001) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  54. Tomassen HBM, Smolders AJP, Limpens J, Lamers LPM, Roelofs JGM (2004) Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? J Appl Ecol 41:139–150CrossRefGoogle Scholar
  55. van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275CrossRefPubMedGoogle Scholar
  56. Van der Molen WH (1981) Über die Breite hydrologischer Schutzzonen um Naturschutzgebiete in Mooren. Telma 11:213–220Google Scholar
  57. Vitt DH, Slack NG (1984) Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands. Can J Bot 62:1409–1430CrossRefGoogle Scholar
  58. Waddington JM, Rochefort L, Campeau S (2003) Sphagnum production and decomposition in a restored cutover peatland. Wetl Ecol Manag 11:85–95CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Landscape Ecology and Site EvaluationUniversity of RostockRostockGermany
  2. 2.Department of BotanyInstitute of Biological Sciences, University of RostockRostockGermany

Personalised recommendations