Wetlands Ecology and Management

, Volume 20, Issue 3, pp 271–285 | Cite as

Occurrence and distribution of plankton-associated and free-living toxigenic Vibrio cholerae in a tropical estuary of a cholera endemic zone

  • Sucharit Basu Neogi
  • M. Sirajul Islam
  • G. Balakrish Nair
  • Shinji Yamasaki
  • Rubén J. LaraEmail author
Original Paper


Cholera epidemics are thought to be influenced by changes in populations of estuarine Vibrio cholerae. We investigated the abundance and distribution of this bacterium, as “free-living” (<20 μm fraction) and associated with microphytoplankton (>20 μm) or zooplankton (>60 μm), in the Karnaphuli estuary of Bangladesh during pre- and post-monsoon seasons. Cultivable Vibrio populations were ~102–104 colony forming units (CFU) ml−1 in the high saline zone (19–23 practical salinity unit, PSU) and declined in freshwater (<101 CFU ml−1). Culture independent detection of toxigenic V. cholerae O1 and O139 serogroups revealed a higher abundance of “free-living” (104–105 cells l−1) than those attached to plankton (101–103 cells l−1). However, “free-living” O1 and O139 cells were sometimes absent in the medium saline and freshwater areas (0.0–11 practical salinity unit [PSU]). In contrast, plankton samples always harbored these serogroups despite changes in salinity and other physico-chemical properties. Microphytoplankton and zooplankton were dominated by diatoms and blue-green algae, and copepods and rotifers, respectively. Toxigenic V. cholerae abundance did not correlate with plankton abundance or species but had a positive correlation with chitin in the <20 μm fraction, where suspended particulate matter (SPM), V. cholerae and chitin concentrations were highest. C:N ratios indicated that organic matter in SPM originated predominantly from plankton. The differential occurrence of “free-living” and attached V. cholerae suggests a pivotal function of plankton in V. cholerae spreading into freshwater areas. The probable association of this pathogen with organisms and particles in the nanoplankton (<20 μm) fraction requires validation of the concept of the “free living” state of V. cholerae in aquatic habitats.


Vibrio cholerae Salinity Chitin Phytoplankton Zooplankton 



This study was performed in partial fulfillment of the requirements of a PhD thesis for S.B. Neogi from the Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan. We thank D. Peterke and D. Dasbach of ZMT, Bremen, Germany and members of the Environmental Microbiology Laboratory, ICDDR, B, Dhaka, Bangladesh for their kind support during sample collection and processing. This collaborative research work was funded by grant LA 868/5-1 from DFG/BMZ, Germany.


  1. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association (APHA), American Water Works Association (AWWA) & Water Environment Federation (WEF), Washington, DCGoogle Scholar
  2. Barbieri E, Falzano L, Fiorentini C, Pianetti A, Baffone W, Fabbri A, Matarrese P, Casiere A, Katouli M, Kühn I, Möllby R, Bruscolini F, Donelli G (1999) Occurrence, diversity, and pathogenicity of halophilic Vibrio spp. and non-O1 Vibrio cholerae from estuarine waters along the Italian Adriatic coast. Appl Environ Microbiol 65:2748–2753PubMedGoogle Scholar
  3. Castañeda Chávez MR, Pardio Sedas V, Orrantia Borunda E, Lango Reynoso F (2005) Influence of water temperature and salinity on seasonal occurrences of Vibrio cholerae and enteric bacteria in oyster-producing areas of Veracruz, México. Mar Pollut Bull 50:1641–1648CrossRefGoogle Scholar
  4. Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031PubMedCrossRefGoogle Scholar
  5. Colwell RR, Kaper J, Joseph SW (1977) Vibrio cholerae, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394–396PubMedGoogle Scholar
  6. Colwell RR, Seidler RJ, Kaper J, Joseph SW, Garges S, Lockman H, Maneval D, Bradford H, Roberts N, Remmers E, Huq I, Huq A (1981) Occurrence of Vibrio cholerae serotype O1 in Maryland and Louisiana estuaries. Appl Environ Microbiol 41:555–558PubMedGoogle Scholar
  7. Colwell RR, Brayton P, Grimes DJ, Roszak DB, Huq A, Palmer LM (1985) Viable but non-culturable Vibrio cholerae and related pathogens in environment: implications for release of genetically engineered microorganisms. Biotechnology 3:817–820CrossRefGoogle Scholar
  8. Constantin de Magny G, Murtugudde R, Sapiano MR, Nizam A, Brown CW, Busalacchi AJ, Yunus M, Nair GB, Gil AI, Lanata CF, Calkins J, Manna B, Rajendran K, Bhattacharya MK, Huq A, Sack RB, Colwell RR (2008) Environmental signatures associated with cholera epidemics. Proc Natl Acad Sci USA 105:17676–17681PubMedCrossRefGoogle Scholar
  9. Daly KL, Wallace DWR, Smith WO, Skoog P, Lara R, Gosselin M, Falck E, Yager PL (1999) Non-Redfield carbon and nitrogen cycling in the Arctic: effects of ecosystem structure and function. J Geophys Res 104:3185–3199CrossRefGoogle Scholar
  10. Eiler A, Gonzalez-Rey C, Allen S, Bertilsson S (2007) Growth response of Vibrio cholerae and other Vibrio spp. to cyanobacterial dissolved organic matter and temperature in brackish water. FEMS Microbiol Ecol 60:411–418PubMedCrossRefGoogle Scholar
  11. Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN, Nair GB, Sack DA, Mekalanos JJ (2005) Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. Proc Natl Acad Sci USA 102:1702–1707PubMedCrossRefGoogle Scholar
  12. Gaffga NH, Tauxe RV, Mintz ED (2007) Cholera: a new homeland in Africa. Am J Trop Med Hyg 77:705–713PubMedGoogle Scholar
  13. Gil AI, Louis VR, Rivera IN, Lipp E, Huq A, Lanata CF, Taylor DN, Russek-Cohen E, Choopun N, Sack RB, Colwell RR (2004) Occurrence and distribution of Vibrio cholerae in the coastal environment of Peru. Environ Microbiol 6:699–706PubMedCrossRefGoogle Scholar
  14. Hasan JA, Bernstein D, Huq A, Loomis L, Tamplin ML, Colwell RR (1994) Cholera DFA: an improved direct fluorescent monoclonal antibody staining kit for rapid detection and enumeration of Vibrio cholerae O1. FEMS Microbiol Lett 120:143–148PubMedCrossRefGoogle Scholar
  15. Heidelberg JF, Heidelberg KB, Colwell RR (2002a) Seasonality of Chesapeake Bay bacterioplankton species. Appl Environ Microbiol 68:5488–5497PubMedCrossRefGoogle Scholar
  16. Heidelberg JF, Heidelberg KB, Colwell RR (2002b) Bacteria of the gamma-subclass Proteobacteria associated with zooplankton in Chesapeake Bay. Appl Environ Microbiol 68:5498–5507PubMedCrossRefGoogle Scholar
  17. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283PubMedGoogle Scholar
  18. Huq A, West PA, Small EB, Huq MI, Colwell RR (1984) Influence of water temperature, salinity, and pH on survival and growth of toxigenic Vibrio cholerae serovar O1 associated with live copepods in laboratory microcosms. Appl Environ Microbiol 48:420–424PubMedGoogle Scholar
  19. IPCC (2007) An Assessment of the intergovernmental panel on climate change: synthesis report summary for policymakers. Accessed 8 June 2011, 22 pp
  20. Islam MS, Drasar BS, Sack RB (1990) Long term persistence of toxigenic Vibrio cholerae O1 in the mucilaginous sheath of a blue-green alga, Anabaena variablilis. J Trop Med Hyg 93:133–139PubMedGoogle Scholar
  21. Islam MS, Drasar BS, Sack RB (1993) The aquatic environment as reservoir of Vibrio cholerae: a review. J Diarr Dis Res 11:197–206Google Scholar
  22. Islam MS, Drasar BS, Sack RB (1994a) The aquatic flora and fauna as reservoirs of Vibrio cholerae: a review. J Diarr Dis Res 12:87–96Google Scholar
  23. Islam MS, Alam MJ, Khan SI, Huq A (1994b) Fecal pollution of freshwater environments in Bangladesh. Int J Environ Stud 46:161–165CrossRefGoogle Scholar
  24. Islam MS, Rahim Z, Alam MJ, Begum S, Moniruzzaman SM, Umeda A, Amako K, Albert MJ, Sack RB, Huq A, Colwell RR (1999) Association of Vibrio cholerae O1 with the cyanobacterium, Anabaena sp., elucidated by polymerase chain reaction and transmission electron microscopy. Trans R Soc Trop Med Hyg 93:36–40PubMedCrossRefGoogle Scholar
  25. Islam MS, Goldar MM, Morshed MG, Khan MN, Islam MR, Sack RB (2002) Involvement of the hap gene (mucinase) in the survival of Vibrio cholerae O1 in association with the blue-green alga, Anabaena sp. Can J Microbiol 48:793–800PubMedCrossRefGoogle Scholar
  26. Islam MS, Jahid MI, Rahman MM, Rahman MZ, Islam MS, Kabir MS, Sack DA, Schoolnik GK (2007) Biofilm acts as a microenvironment for plankton-associated Vibrio cholerae in the aquatic environment of Bangladesh. Microbiol Immunol 51:369–379PubMedGoogle Scholar
  27. Kattner G (1999) Storage of dissolved inorganic nutrients in seawater: poisoning with mercuric chloride. Mar Chem 67:61–66CrossRefGoogle Scholar
  28. Kattner G, Becker H (1991) Nutrients and organic nitrogenous compounds in the marginal ice zone of the Fram Strait. J Mar Syst 2:385–394CrossRefGoogle Scholar
  29. Kirn TJ, Jude BA, Taylor RK (2005) A colonization factor links Vibrio cholerae environmental survival and human infection. Nature 438:863–866PubMedCrossRefGoogle Scholar
  30. Kogure K, Simudu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420PubMedCrossRefGoogle Scholar
  31. Lara RJ, Neogi SB, Islam S, Mahmud ZH, Yamasaki S, Nair GB (2009) Influence of estuarine dynamics and catastrophic climatic events on Vibrio distribution in the Karnaphuli Estuary, Bangladesh. EcoHealth 6:279–286PubMedCrossRefGoogle Scholar
  32. Lara RJ, Neogi SB, Islam S, Mahmud ZH, Islam S, Paul D, Demoz BB, Yamasaki S, Nair GB, Kattner G (2011) Vibrio cholerae in waters of the Sunderban mangrove: relationship with biogeochemical parameters and chitin in seston size fractions. Wetlands Ecol Manage 19:109–119CrossRefGoogle Scholar
  33. Lipp EK, Huq A, Colwell RR (2002) Effects of global climate on infectious disease: the cholera model. Clin Microbiol Rev 15:757–770PubMedCrossRefGoogle Scholar
  34. Lizárraga-Partida ML, Mendez-Gómez E, Rivas-Montaño AM, Vargas-Hernández E, Portillo-López A, González-Ramírez AR, Huq A, Colwell RR (2009) Association of Vibrio cholerae with plankton in coastal areas of Mexico. Environ Microbiol 11:201–208PubMedCrossRefGoogle Scholar
  35. Louis VR, Russek-Cohen E, Choopun N, Rivera IN, Gangle B, Jiang SC, Rubin A, Patz JA, Huq A, Colwell RR (2003) Predictability of Vibrio cholerae in Chesapeake Bay. Appl Environ Microbiol 69:2773–2785PubMedCrossRefGoogle Scholar
  36. Mahmud ZH, Neogi SB, Kassu A, Mai Huong BT, Jahid IK, Islam MS, Ota F (2008) Occurrence, seasonality and genetic diversity of Vibrio vulnificus in coastal seaweeds and water along the Kii Channel, Japan. FEMS Microbiol Ecol 64:209–218PubMedCrossRefGoogle Scholar
  37. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310:1824–1827PubMedCrossRefGoogle Scholar
  38. Middelboe M, Søndergaard M, Letarte Y, Borch NH (1995) Attached and free-living bacteria: production and polymer hydrolysis during a diatom bloom. Microb Ecol 29:231–248CrossRefGoogle Scholar
  39. Miller CJ, Drasar BS, Feachem RG (1984) Response of toxigenic Vibrio cholerae O1 to physico-chemical stresses in aquatic environments. J Hyg (Lond) 93:475–495CrossRefGoogle Scholar
  40. Montgomery MT, Welschmeyer NA, Kirchman DL (1990) A simple assay for chitin: application to sediment trap samples from the subarctic Pacific. Mar Ecol Prog Ser 64:301–308CrossRefGoogle Scholar
  41. Mueller RS, McDougald D, Cusumano D, Sodhi N, Kjelleberg S, Azam F, Bartlett DH (2007) Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization. J Bacteriol 189:5348–5360PubMedCrossRefGoogle Scholar
  42. Nalin DR, Daya V, Ried A, Levine MM, Cisneros L (1979) Adsorption and growth of Vibrio cholerae to chitin. Infect Immun 25:768–770PubMedGoogle Scholar
  43. Pascual M, Rodo X, Ellner SP, Colwell RR, Bouma MJ (2000) Cholera dynamics and El Niño-southern oscillation. Science 289:1766–1769PubMedCrossRefGoogle Scholar
  44. Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948CrossRefGoogle Scholar
  45. Pruzzo C, Vezzulli L, Colwell RR (2008) Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 10:1400–1410PubMedCrossRefGoogle Scholar
  46. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of seawater. In: Hill MN (ed) The sea, vol 2. Wiley, New York, pp 26–79Google Scholar
  47. Rizvi S, Huq MI, Benenson S (1965) Isolation of hemagglutinative non-El Tor cholera vibrios. J Bacteriol 89:910–912PubMedGoogle Scholar
  48. Sack DA, Sack RB, Nair GB, Siddique AK (2004) Cholera. Lancet 363:223–233PubMedCrossRefGoogle Scholar
  49. Seeligmann CT, Mirande V, Tracanna BC, Silva C, Aulet O, Cecilia M, Binsztein N (2008) Phytoplankton-linked viable non-culturable Vibrio cholerae O1 (VNC) from rivers in Tucuman, Argentina. J Plankton Res 30:367–377CrossRefGoogle Scholar
  50. Tamplin ML, Gauzens AL, Huq A, Sack DA, Colwell RR (1990) Attachment of Vibrio cholerae serogroup O1 to zooplankton and phytoplankton of Bangladesh waters. Appl Environ Microbiol 56:1977–1980PubMedGoogle Scholar
  51. Vezzulli L, Pezzati E, Moreno M, Fabiano M, Pane L, Pruzzo C, The VibrioSea Consortium (2009) Benthic ecology of Vibrio spp. and pathogenic Vibrio species in a coastal Mediterranean environment (La Spezia Gulf, Italy). Microb Ecol 58:808–818PubMedCrossRefGoogle Scholar
  52. Walve J, Larsson U (1999) Carbon, nitrogen and phosphorus stoichiometry of crustacean zooplankton in the Baltic Sea: implications for nutrient recycling. J Plank Res 21:2309–2321CrossRefGoogle Scholar
  53. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae biofilm. Mol Microbiol 34:586–595PubMedCrossRefGoogle Scholar
  54. West PA, Colwell RR (1984) Identification and classification of Vibrionaceae: an overview. In: Colwell RR (ed) Vibrios in the environment. Wiley, New York, pp 285–363Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sucharit Basu Neogi
    • 1
    • 2
  • M. Sirajul Islam
    • 2
  • G. Balakrish Nair
    • 3
  • Shinji Yamasaki
    • 1
  • Rubén J. Lara
    • 4
    • 5
    Email author
  1. 1.Graduate School of Life and Environmental SciencesOsaka Prefecture UniversitySakaiJapan
  2. 2.International Centre for Diarrhoeal Disease Research, BangladeshDhakaBangladesh
  3. 3.National Institute of Cholera and Enteric DiseasesKolkataIndia
  4. 4.Leibniz Centre for Tropical Marine Ecology GmbHBremenGermany
  5. 5.Argentine Institute of OceanographyBahía BlancaArgentina

Personalised recommendations