Wetlands Ecology and Management

, Volume 19, Issue 2, pp 183–194 | Cite as

Effects of a hydrological protection zone on the restoration of a raised bog: a case study from Northeast-Germany 1997–2008

  • André BönselEmail author
  • Anne-Gesine Sonneck
Original Paper


We investigated the changes of water level and vegetation in a restored cut-over raised bog in response to a hydrological protection zone established around the bog. The restoration began 1997 and techniques involved ditch blocking within and around the bog to stimulate a return to conditions of intact bog ecosystems. In order to monitor the rehabilitation of the raised bog, water levels and vegetation have been recorded since before restoration measures began. The monitoring is ongoing, but an assessment of 15 year’s data (1994–2008) is presented. A hydrological protection zone with continuous high water levels could be established around the raised bog which minimizes the runoff of precipitation. Shortly after the first measures, the water levels increased significantly at all dipwells. Parallel to the increasing water levels a vascular plant species assemblage and a diverse Sphagnum community developed. In particular Sphagnum fimbriatum, S. palustre, S. recurvum and S. squarrosum spread efficiently. The cover of trees decreased significantly because of high water levels and ongoing acidification by Sphagnum spp. The high water levels have stimulated the re-vegetation and the hydrology self-regulation of the acrotelm. The successful regeneration of the acrotelm particularly became apparent in years with below-average precipitations (e.g. 2008), when the water levels in the central parts of the raised bog did not fall back to the low level reached in previous years, which had also remarkably water deficits (e.g. 2003).


Ditch blocking Northeast-Germany Raised bog restoration Re-wetting Sphagnum regeneration 



We are grateful to M. Runze, I. Koska, I. Witt, D. Triebel and D. Gremer for providing invaluable help in the design and implementation of the field experiments. We further thank Dr. H. Lange for providing statistical analyses. Special thanks are given to all of the members of the nature conservation authority, who made the restoration program possible and who applied for subsidies for embankments for re-wetting. The thoughtful comments of Dr. S. Glatzel and several anonymous reviewers greatly improved this manuscript.


  1. Augustin J, Merbach W, Schmidt W, Reining E (1996) Effect of changing temperature and watertable on trace gas emission from minerotrophic mires. Angewandte Botanik 70:45–51Google Scholar
  2. Baden W, Eggelsmann R (1963) Zur Durchlässigkeit der Moorböden. Zeitschrift für Kulturtechnik 4:226–254Google Scholar
  3. Bengtsson J, Fagerström T, Rydin H (1994) Competition and coexistence in plant communities. Trends Ecol Evol 9:246–250PubMedCrossRefGoogle Scholar
  4. Blodau C (2002) Carbon cycling in peatlands—a review of processes and controls. Environ Rev. 10:111–134CrossRefGoogle Scholar
  5. Bönsel A (2001) Hat Aeshna subarctica (Walker 1908) in Nordostdeutschland eine Überlebenschance? Die Entwicklung von zweier Vorkommen im Vergleich zum gesamten Bestand in Mecklenburg-Vorpommern. Natur und Landschaft 76:257–261Google Scholar
  6. Bönsel A (2005) Ecological analysis of Odonata and Saltatoria communities in North-Eastern German Raised bogs and theirs surroundings. PhD Thesis, University of RostockGoogle Scholar
  7. Bönsel A, Runze M (2005) Die Bedeutung Projektbegleitender Erfolgskontrollen bei der Revitalisierung eines Regenmoores durch wasserbauliche Maßnahmen. Natur und Landschaft 80:154–160Google Scholar
  8. Braun-Blanquet J (1964) Pflanzensoziologie. Springer Verlag, WienGoogle Scholar
  9. Breeuwer A, Robroek BJM, Limpens J, Heijmans MMPD, Schouten MGC, Berendse F (2009a) Decreased summer water table depth affects peatland vegetation. Basic Appl Ecol 10:330–339CrossRefGoogle Scholar
  10. Breeuwer AJG, Heijmans MMPD, Berendse F, Gleichman JM, Robroek BJM, Limpens J (2009b) Response of Sphagnum species mixtures to increased temperature and nitrogen availability. Plant Ecol 2004:97–111CrossRefGoogle Scholar
  11. Chirino C, Campeau S, Rochefort L (2006) Sphagnum establishment on bare peat: the importance of climatic variability and Sphagnum species richness. Appl Veg Sci 9:285–294CrossRefGoogle Scholar
  12. Clymo RS (1978) Model of peat bog growth. Ecological Studies, Berlin 27:187–223Google Scholar
  13. Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte Ecology. Chapman and Hall, London, pp 229–289Google Scholar
  14. Crushell PH, Smolders AJP, Schouten MGC, Roelofs JGM, van Wirdum G (2009) The origin and development of a minerotrophic soak on an Irish raised bog: an interpretation of depth profiles of hydrochemistry and peat chemistry. The Holocene 19:921–935CrossRefGoogle Scholar
  15. Eggelsmann R (1960) Über den unterirdischen Abfluß aus Mooren. Wasserwirtschaft 50:149–154Google Scholar
  16. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D (1992) Zeigerwerte von Pflanzen in Mitteleuropa. Verlag Erich Goltze, GöttingenGoogle Scholar
  17. Erwin KL (2009) Wetlands and global climate change: the role of wetland restoration in a changing world. Wetl Ecol Manag 17:71–84CrossRefGoogle Scholar
  18. Famous MS, Taylor N (2005) Regeneration of three Sphagnum species. Wetl Ecol Manag 13:635–645CrossRefGoogle Scholar
  19. Frahm J-P, Frey W (2004) Moosflora. Eugen Ulmer Verlag, StuttgartGoogle Scholar
  20. Gaudig G, Kamermann D, Joosten H (2007) Growing media: promises of Sphagnum biomass. Acta Hortic 779:165–171Google Scholar
  21. Glatzel S, Forbrich I, Krüger C, Lemke S, Gerold G (2008) Small scale controls of greenhouse gas release under elevated N deposition rates in a restoring peat bog in NW Germany. Biogeosciences 5:925–935CrossRefGoogle Scholar
  22. Gorham E, Janssens JA (1992) Concepts of fen and bog reexamined in relation to bryophyte cover and the acidity of surface waters. Acta Societatis Botanicorum Poloniae 61:7–20Google Scholar
  23. Gorham E, Rochefort L (2003) Peatland restoration: a brief assessment with special reference to Sphagnum bogs. Wetl Ecol Manag 11:109–119CrossRefGoogle Scholar
  24. Gremer D, Michaelis D (2003) NSG “Rauhes Moor” im Grenztal. Greifswalder Geographische Arbeiten 30:43–47Google Scholar
  25. Grootjans AP, Adema EB, Baaijens GJ, Rappoldt K, Verschoor A (2003) Mechanisms behind restoration of small bog ecosystems in a cover sand landscape. Archiv für Naturschutz und Landschaftsforschung August 2003:43–48Google Scholar
  26. Grootjans AP, Van Diggelen R, Bakker JP (2006) Restoration of mires and wet grasslands. In: Van Andel J, Aronson J (eds) Blackwell Publishing, Oxford, pp 111–123Google Scholar
  27. Höper H et al (2008) Restoration of peatlands and greenhouse gas balances. In: Strack M (ed) Northern peatlands, greenhouse gas exchange and climate change. International Peat Society, Jyväskylä, pp 183–210Google Scholar
  28. Howie SA, Whitfield PH, Hebda RJ, Munson TG, Dakin RA, Jeglum JK (2009) Water table and vegetation response to ditch blocking: restoration of a raised bog in Southwestern British Columbia. Can Water Resour J 34:381–392CrossRefGoogle Scholar
  29. Ingram HAP (1978) Soil layers in mires: function and terminology. J Soil Sci 29:224–227CrossRefGoogle Scholar
  30. Ingram HAP (1982) Size and shape in raised mire ecosystems: a geophysical model. Nature 297:300–303CrossRefGoogle Scholar
  31. Ivanov KE (1981) Water movement in mirelands. Academic Press, LondonGoogle Scholar
  32. Joosten JHJ (1995) Time to regenerate: long term perspectives of raised-bog regeneration with special emphasis on paleoecological studies. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 379–404Google Scholar
  33. Jortay A, Schumacker R (1989) Zustand, Erhaltung und Regeneration der Hochmoore im Hohen Venn (Belgien). Telma, Beiheft 2:279–293Google Scholar
  34. Klötzli F, Grootjans AP (2001) Restoration of natural and semi-natural wetlands systems in Central Europe: progress and predictability of developments. Restor Ecol 9:209–219CrossRefGoogle Scholar
  35. Koch FE (1849) Naturgeschichtliche Bemerkungen über das zwischen dem Trebel- und Recknitzthale gelegene Moor. Archiv des Vereins der Freunde der Naturgeschichte in Mecklenburg 3:147–159Google Scholar
  36. Kotowski W, van Diggelen R, Kleinke J (1998) Behaviour of wetland plant species along a moisture gradient in two geographically distant areas. Acta Bot Neerl 47:337–349Google Scholar
  37. Kowatsch A (2007) Moorschutzkonzepte und -programme in Deutschland. Ein historischer und aktueller Überblick. Naturschutz und Landschaftsplanung 39:197–204Google Scholar
  38. Laine J, Vasander H, Laiho R (1995) Long-term effects of water level drawndown on the vegetation of drained pine mires in southern Finland. J Appl Ecol 32:785–802CrossRefGoogle Scholar
  39. Lindsay RA, Immirzi CP (1996) An inventory of lowland raised bogs in Great Britain. In: Scottish Natural Heritage Research, Survey and Monitoring Report, PerthGoogle Scholar
  40. Malterer T, Johnson K, Stewart J (1998) Peatland Restoration and Reclamation. Proceedings 1998 international Peat symposium, Duluth, Minnesota, USAGoogle Scholar
  41. Money RP (1995) Re-establishment of a Sphagnum dominated flora on cut-over lowland raised bogs. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. Wiley, Chichester, pp 405–422Google Scholar
  42. Morgan-Jones W, Poole JS, Goodall R (2005) Characterisation of hydrological protection zones at the margins of designated lowland raised peat bog sites. Joint Nature Conservation Committee Report, Peterborough 365:3–87Google Scholar
  43. Overbeck F, Happach H (1957) Über das Wachstum un den Wasserhaushalt einiger Hochmoorsphagnen. Flora 144:335–402Google Scholar
  44. Parkyn L, Stoneman RE, Ingram HAP (1997) Conserving Peatlands. CAB international, WallingfordGoogle Scholar
  45. Peus F (1950) Die ökologische und geographische Determination des Hochmoores als “Steppe”. Veröffentlichung des Naturwissenschaftlichen Vereins zu Osnabrück 25:39–57Google Scholar
  46. Pfadenhauer J, Grootjans AP (1999) Wetland restoration in Central Europe: aims and methods. Appl Veg Sci 2:95–106CrossRefGoogle Scholar
  47. Precker A, Krbetschek M (1997) Die Regenmoore Mecklenburg-Vorpommern–Erste Auswertungen der Untersuchungen zum Regenmoor- Schutzprogramm des Landes Mecklenburg/Vorpommern. Telma 27:205–221Google Scholar
  48. Reinhard H (1963) Beitrag zur Entwicklungsgeschichte des Grenztales und seine Beziehung zur Litorinatransgression. Geologie 12:94–117Google Scholar
  49. Richert M, Dietrich O, Koppisch D, Roth S (2000) The influence of rewetting on vegetation development and decomposition in a degraded fen. Restor Ecol 8:186–195CrossRefGoogle Scholar
  50. Robroek BJM, Limpens J, Breeuwer A, Crushell PH, Schouten MGC (2007) Interspecific competition between Sphagnum mosses at different water tables. Funct Ecol 21:805–812CrossRefGoogle Scholar
  51. Robroek BJM et al (2009) Sphagnum re-introduction in degraded peatlands: the effects of aggregation, species identity and water table. Basic Appl Ecol 10:697–706CrossRefGoogle Scholar
  52. Rochefort L, Gauthier R, Lequéré D (1995) Sphagnum regeneration—toward an optimisation of bog restoration. In: Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (eds) Restoration of temperate wetlands. John Wiley & Sons, Chichester, pp 423–434Google Scholar
  53. Rochefort L, Quinty F, Campeau S, Johnson K, Malterer T (2003) North American approach to the restoration of Sphagnum dominated peatlands. Wetl Ecol Manag 11:3–20CrossRefGoogle Scholar
  54. Roulet NT (2000) Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada. Wetlands 20:605–615CrossRefGoogle Scholar
  55. Rydin H (1985) Effect of water level on desiccation of Sphagnum in relation to surrounding Sphagna. Oikos 45:374–379CrossRefGoogle Scholar
  56. Rydin H, McDonald AJ (1985) Tolerance of Sphagnum to water level. J Bryol 13:571–578Google Scholar
  57. Smolders AJP, Tomassen HBM, Van Mullekom M, Lamers LPM, Roelofs JGM (2003) Mechanisms involved in the re-establishment of Sphagnum-dominated vegetation in rewetted bog remnants. Wetl Ecol Manag 11:403–418CrossRefGoogle Scholar
  58. Strack M, Waddington JM, Turetsky M, Roulet NT, Byrne KA (2008) Northern peatlands, greenhouse gas exchange and climate change. In: Strack M (ed) Peatlands and climate change. International Peat Society, Jyväskylä, pp 44–69Google Scholar
  59. Succow M (1988) Landschaftsökologische Moorkunde. Gebrüder Borntraeger, BerlinGoogle Scholar
  60. Succow M, Joosten H (2001) Landschaftsökologische Moorkunde. E. Schweizerbart’sche Verlagsbuchhandlung, StuttgartGoogle Scholar
  61. Thompson DK, Waddington JM (2008) Sphagnum under pressure: towards an ecohydrological approach to examining Sphagnum productivity. Ecohydrology 1:299–308CrossRefGoogle Scholar
  62. van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275PubMedCrossRefGoogle Scholar
  63. Vitt DH, Slack NG (1984) Niche diversification of Sphagnum relative to environmental factors in northern Minnesota peatlands. Can J Bot 62:1409–1430CrossRefGoogle Scholar
  64. Waddington JM, Rochefort L, Campeau S (2003) Sphagnum production and decomposition in a restored cutover peatland. Wetl Ecol Manag 11:85–95CrossRefGoogle Scholar
  65. Wheeler BD, Shaw SC, Fojt WJ, Robertson RA (1995) Restoration of temperate wetlands. John Wiley & Sons, ChichesterGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Landscape Ecology and Site EvaluationUniversity of RostockRostockGermany
  2. 2.Department of BotanyUniversity of RostockRostockGermany

Personalised recommendations