Wetlands Ecology and Management

, Volume 18, Issue 6, pp 665–677 | Cite as

Distribution and population structure of four Central Amazonian high-várzea timber species

  • Tatiana Andreza da Silva Marinho
  • Maria T. F. Piedade
  • Florian Wittmann
Original Paper


Amazonian white-water (várzea) floodplains harbor many commercially important timber species which in Brazil are harvested following regulations of the Federal Environmental Agency (IBAMA). Although it is well-known that tree physiology, growth, and species distribution of Amazonian floodplain trees is linked to the heights and durations of the periodical inundations, information about timber stocks and population dynamics is lacking for most tree species. We investigated timber stocks and the population structure of four intensely logged tree species in a western Brazilian várzea forest on an area totaling 7.5 ha. Spatial distribution was investigated in all trees as a function of inundation height and duration and the distance to the river channel, and additionally for saplings (trees <10 cm diameter at breast height––DBH) as a function of the relative photosynthetically active radiation (rPAR). The diameter-class distribution in Hura crepitans and Ocotea cymbarum indicated that populations are subject to density variations that possibly are traced to small-scale flood variability. In all species, saplings concentrated at higher topographic elevations than the mature tree populations, which suggest that the physical ‘escape’ from a flooded environment is an important acclimation to flooding. While Ocotea cymbarum and Guarea guidonia were high-density wood species characterized by random dispersion and a pronounced shade-tolerance, Hura crepitans and Sterculia apetala presented lower wood density, aggregated dispersion, and were more light-demanding. All species presented exploitable stems according to the current harvest regulations, with elevated abundances in comparison to other Amazonian forest types. However, stem densities are below the harvest rates indicating that the harvest regulations are not sustainable. We recommend that the forest management in várzea forests should include specific establishment rates of timber species in dependence of the peculiar site conditions to achieve sustainability.


Establishment Floodplain forest Forest management Population structure Species distribution Várzea 


  1. Albernaz AL, Ayres JM (1999) Logging along the middle Solimões River. In: Padoch C, Ayres JM, Pinedo-Vasquez M, Henderson A (eds) Várzea: diversity, development, and conservation of Amazonia’s whitewater floodplains. The New York Botanical Garden Press, NY, pp 135–151Google Scholar
  2. Ayres JM (1993) As matas de várzea do Mamirauá. CNPq––Sociedade Civil Mamirauá. Estudos de Mamirauá, vol I. BrasíliaGoogle Scholar
  3. Ayres JM, Alves AR, Queiroz HL et al (1998) Mamirauá. Die Erhaltung der Artenvielfalt in einem amazonischen Überschwemmungswald. In: De Freitas MLD (eds) Amazonien: Himmel der Neuen Welt. BMBF, Bonn, pp 262–274Google Scholar
  4. Barros AC, Uhl C (1995) Logging along the Amazon River and estuary: patterns, problems, and potential. For Ecol Manag 77:87–105CrossRefGoogle Scholar
  5. Bazzaz FA (1991) Regeneration of tropical forests: physiological responses of pioneer and secondary species. In: Gomez-Pompa A, Whitmore TC, Hadley M (eds) Rain forest regeneration and management. The Parthenon Publishing Group, London, pp 91–118Google Scholar
  6. Bentes-Gama MM, Scolforo JRS, Gama JRV et al (2002) Estrutura e valorização de uma floresta de várzea alta na Amazônia. Cerne 8(1):88–102Google Scholar
  7. Brower JE, Zar JH (1984) Field and laboratory methods for general ecology, 2nd edn. WC Brown Publ, IowaGoogle Scholar
  8. Brown S (1997) Estimating biomass and biomass change of tropical forest. FAO Forestry paper 134, RomeGoogle Scholar
  9. Chave J, Andalo C, Brown S et al (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99CrossRefPubMedGoogle Scholar
  10. Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rainforest. J Ecol 86:101–112CrossRefGoogle Scholar
  11. Conserva AS (2006) Germinação de sementes, emergência, e recrutamento de plântulas de dez espécies arbóreas das várzeas das Reservas de Desenvolvimento Sustentável Amanã e Mamirauá, Amazônia Central. Dissertation, Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  12. De Simone O, Haase K, Müller E et al (2002) Adaptations of Central Amazon tree species to prolonged flooding: root morphology and leaf longevity. Plant Biol 2:515–522CrossRefGoogle Scholar
  13. Ebdon D (1998) Statistics in geography. Basil Blackwell, OxfordGoogle Scholar
  14. Gottsberger G (1978) Seed dispersal by fish in inundated regions of Humaitá, (Amazonas). Biotropica 10:170–183CrossRefGoogle Scholar
  15. Goulding M (1983) The role of fishes in seed dispersal and plant distribution in Amazonian floodplain ecosystems. In: Kubitzki K (ed) Dispersal and distribution, vol 7. Sonderarbeiten des naturwissenschaftlichen Vereins Hamburg, pp 271–283Google Scholar
  16. Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. J Ecol 89:947–959CrossRefGoogle Scholar
  17. Hubbell SP (1995) Toward a global research strategy on the ecology of natural tropical forests to meet conservation and management needs. In: Lugo AE, Lowe C (eds) Tropical forests: management and ecology. Springer, Berlin, pp 423–437Google Scholar
  18. IBAMA (2000) Projeto de manejo dos recursos naturais das várzeas. ManausGoogle Scholar
  19. Junk WJ, Bayley PB, Sparks RE (1989) The Flood pulse concept in river-floodplain systems. In: Dodge D (ed) Proceedings of the international large river symposium, Ottawa, vol 106. Canadian Special Publications of Fisheries and Aquatic Sciences, pp 110–127Google Scholar
  20. Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (2000) Actual use and options for the sustainable management of the central Amazon floodplain: discussion and conclusions. In: Junk WJ, Ohly JJ, Piedade MTF, Soares MGM (eds) The central Amazonian floodplain: actual use and options for sustainable management. Backhuys Publishers, Leiden, pp 535–579Google Scholar
  21. Klenke M, Ohly JJ (1993) Wood from floodplains. In: Junk WJ, Bianchi HK (eds) 1st SHIFT workshop, Belém, Brazil. GKSS-Researchcenter, GeesthachtGoogle Scholar
  22. Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 163:285–304CrossRefGoogle Scholar
  23. Kubitzki K, Ziburski A (1994) Seed dispersal in floodplain forest of Amazonian. Biotropica 26(1):30–43CrossRefGoogle Scholar
  24. Kvist LP, Andersen MK, Stagegaard J et al (2001) Extraction from woody forest plants in flood plain communities in Amazonian Peru: use, choice, evaluation and conservation status of resources. For Ecol Manag 150:147–174CrossRefGoogle Scholar
  25. Lieberman D, Lieberman M (1987) Forest tree growth and dynamics at La Selva, Costa Rica (1969–1992). J Trop Ecol 3:347–358CrossRefGoogle Scholar
  26. Morisita M (1959) Measuring of the dispersion of individuals and analysis of the distribution patterns. Mem Fac Sci Kyushi Univ E2:214–235Google Scholar
  27. Muller-Landau HC (2004) Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica 36:20–32Google Scholar
  28. Nebel G, Meilby H (2005) Growth and population structure of timber species in Peruvian Amazon floodplains. For Ecol Manag 215:196–211CrossRefGoogle Scholar
  29. Nebel G, Kvist L, Vanclay JK et al (2001) Structure and floristic composition of flood plain forests in the Peruvian Amazon I. Overstorey. Forest Ecol Manag 150:27–57CrossRefGoogle Scholar
  30. Nogueira EM, Nelson BW, Fearnside PM (2005) Wood density in dense forest in Central Amazonia, Brazil. For Ecol Manag 208:261–286CrossRefGoogle Scholar
  31. Oliveira Wittmann A, Piedade MTF, Parolin P, Wittmann F (2007) Germination in four low-várzea tree species of Central Amazonia. Aquat Bot 86(3):197–203CrossRefGoogle Scholar
  32. Parolin P (2002) Submergence tolerance versus escape from submergence:two strategies of seedling establishment in Amazonian floodplains. Environ Exp Bot 48(2):177–186CrossRefGoogle Scholar
  33. Parolin P (2009) Submerged in darkness: adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann Bot 103:359–376CrossRefPubMedGoogle Scholar
  34. Parolin P, De Simone O, Haase K et al (2004) Central Amazonian floodplain forests: tree adaptations in a pulsing system. Bot Rev 70:357–380CrossRefGoogle Scholar
  35. Parolin P, Lucas C, Piedade MTF, Wittmann F (2010) Drought responses of flood-tolerant trees in Amazonian floodplains. Ann Bot 105(1):129–139CrossRefPubMedGoogle Scholar
  36. Pélissier R, Dray S, Sabatier D (2002) Within-plot relationships between tree species occurrences and hydrological soil constraints: an example in French Guiana investigated through canonical correlation analysis. Plant Ecol 162:143–156CrossRefGoogle Scholar
  37. Phillips OL, Vargas PN, Monteagudo AL et al (2003) Habitat association among Amazonian tree species: a landscape-scale approach. J Ecol 91:757–775CrossRefGoogle Scholar
  38. Pires JM, Prance GT (1985) The vegetation types of the Brazilian Amazon. In: Prance GT, Lovejoy TE (eds) Key environments: Amazonia. Pergamon Publishers, Oxford, pp 109–145Google Scholar
  39. Pitman NCA, Terborgh J, Silman MR et al (2002) A comparison of tree species diversity in two upper Amazonian forests. Ecology 83(11):3210–3224CrossRefGoogle Scholar
  40. Pitman NCA, Cerón CE, Reyes CI et al (2005) Catastrophic natural origin of a species-poor tree community in the world’s richest forest. J Trop Ecol 21:559–568CrossRefGoogle Scholar
  41. Prance GT (1979) Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia 3(1):26–38CrossRefGoogle Scholar
  42. Rosa SA (2008) Modelos de crescimento de quatro espécies madeireiras de floresta de várzea da Amazônia Central por meio de métodos dendrocronológicos. Dissertation, Instituto Nacional de Pesquisas da Amazônia, ManausGoogle Scholar
  43. Schöngart J, Piedade MTF, Ludwigshausen S et al (2002) Phenology and stem growth periodicity of tree species in Amazonian floodplain forests. J Trop Ecol 18:581–597CrossRefGoogle Scholar
  44. Schöngart J, Junk WJ, Piedade MTF et al (2004) Teleconnection between tree growth in the Amazonian floodplains and the El Niño––southern oscillation effect. Glob Change Biol 10:683–692CrossRefGoogle Scholar
  45. Schöngart J, Piedade MTF, Wittmann F et al (2005) Wood growth patterns of Macrolobium acaciifolium (Benth.) Benth. (Fabaceae) in Amazonian black-water and white-water floodplain forests. Oecologia 145:454–461CrossRefPubMedGoogle Scholar
  46. Schöngart J, Wittmann F, Worbes M et al (2007) Management criteria for Ficus insipida (Willd.) Moraceae in Amazonian whitewater floodplain forests defined by tree-ring analysis. Ann For Sci 64:657–664CrossRefGoogle Scholar
  47. Sombroek W (2000) Amazon landforms and soils in relation to biological diversity. Acta Amazon 30(1):81–100Google Scholar
  48. Swaine MD, Beer T (1976) Explosive seed dispersal in Hura crepitans L. (Euphorbiaceae). New Phytol 78:695–708CrossRefGoogle Scholar
  49. Terborgh J, Andresen E (1998) The composition of Amazonian forests: patterns at local and regional scales. J Trop Ecol 14:645–664CrossRefGoogle Scholar
  50. Voesenek LACJ, Blom CWPM (1999) Stimulated shoot elongation: a mechanism of semi-aquatic plants to avoid submergence stress. In: Lerner HR (ed) Plant responses to environmental stresses: from phytohormones to genome reorganization. Marcel Dekker, New YorkGoogle Scholar
  51. Voesenek LACJ, Benschop JJ, Bou J et al (2003) Interactions between plant hormones regulate submergence-induced shoot elongation in the flooding-tolerant dicot Rumex palustris. Ann Bot 91:205–211CrossRefPubMedGoogle Scholar
  52. Whitmore TC (1989) Canopy gaps and the two major groups of forest trees. Ecology 70:536–537CrossRefGoogle Scholar
  53. Whitmore TC (1995) Perspectives in tropical rain forest research. In: Lugo AE, Lowe C (eds) Tropical forests: ecology and management. Springer-Verlag, Berlin, pp 397–407Google Scholar
  54. Wiemann MC, Williamson GB (1989) Wood specific gravity gradients in tropical dry and montane rain forest trees. Am J Bot 76:924–928CrossRefGoogle Scholar
  55. Wittmann F, Junk WJ (2003) Sapling communities in Amazonian white-water forests. J Biogeogr 30:1533–1544CrossRefGoogle Scholar
  56. Wittmann F, Parolin P (2005) Aboveground roots in Amazonian floodplain trees. Biotropica 37(4):609–619CrossRefGoogle Scholar
  57. Wittmann F, Anhuf D, Junk WJ (2002) Tree species distribution and community structure of central Amazonian várzea forests by remote sensing techniques. J Trop Ecol 18:805–820CrossRefGoogle Scholar
  58. Wittmann F, Junk WJ, Piedade MTF (2004) The várzea forests in Amazonia: flooding and the highly dynamic geomorphology interact with natural forest succession. For Ecol Manag 196:199–212CrossRefGoogle Scholar
  59. Wittmann F, Schöngart J, Montero JC et al (2006a) Tree species composition and diversity gradients in white-water forests across the Amazon Basin. J Biogeogr 33:1334–1347CrossRefGoogle Scholar
  60. Wittmann F, Schöngart J, Parolin P et al (2006b) Wood specific gravity of trees in Amazonian white-water forests in relation to flooding. IAWA J 27(3):255–266Google Scholar
  61. Wittmann F, Zorzi BT, Tizianel FAT et al (2008) Tree species composition, structure, and aboveground wood biomass of a riparian forest of the lower Miranda River, Southern Pantanal, Brazil. Folia Geobot 43:397–411CrossRefGoogle Scholar
  62. Wittmann F, Schöngart J, Junk WJ (in press) Phytogeography, species diversity, community structure and dynamics of Amazonian várzea forests. In: Junk WJ, Piedade MTF, Wittmann F et al (eds) Ecology and management of Amazonian floodplain forests. Ecological Series, Springer Verlag, BerlinGoogle Scholar
  63. Worbes M (1997) The forest ecosystem of the floodplains. In: Junk WJ (ed) The central Amazon floodplain: ecology of a pulsating system. ecological studies, vol 126. Springer-Verlag, Berlin, pp 223–266Google Scholar
  64. Worbes M, Piedade MTF, Schöngart J (2001) Holzwirtschaft im Mamirauá-Projekt zur nachhaltigen Entwicklung einer Region im Überschwemmungsbereich des Amazonas. Forstarchiv 72:188–200Google Scholar
  65. Zent EL, Zent S (2004) Floristic composition, structure, and diversity of four forest plots in the Sierra Maigualida, Venezuelan Guayana. Biodivers Conserv 13:2453–2484CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Tatiana Andreza da Silva Marinho
    • 1
  • Maria T. F. Piedade
    • 1
  • Florian Wittmann
    • 2
    • 3
  1. 1.Instituto Nacional de Pesquisas da Amazônia, Avenida André AraújoManausBrazil
  2. 2.Department of BiogeochemistryMax Planck Institute for ChemistryMainzGermany
  3. 3.Projeto INPA/Max-PlanckManausBrazil

Personalised recommendations