Wetlands Ecology and Management

, Volume 18, Issue 3, pp 281–296 | Cite as

Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review

Original Paper

Abstract

Wetland vegetation plays a key role in the ecological functions of wetland environments. Remote sensing techniques offer timely, up-to-date, and relatively accurate information for sustainable and effective management of wetland vegetation. This article provides an overview on the status of remote sensing applications in discriminating and mapping wetland vegetation, and estimating some of the biochemical and biophysical parameters of wetland vegetation. Research needs for successful applications of remote sensing in wetland vegetation mapping and the major challenges are also discussed. The review focuses on providing fundamental information relating to the spectral characteristics of wetland vegetation, discriminating wetland vegetation using broad- and narrow-bands, as well as estimating water content, biomass, and leaf area index. It can be concluded that the remote sensing of wetland vegetation has some particular challenges that require careful consideration in order to obtain successful results. These include an in-depth understanding of the factors affecting the interaction between electromagnetic radiation and wetland vegetation in a particular environment, selecting appropriate spatial and spectral resolution as well as suitable processing techniques for extracting spectral information of wetland vegetation.

Keywords

Biomass Leaf area index Mapping Remote sensing Water content Wetland vegetation 

References

  1. Abdel-Rahman EM, Ahmed FB (2008) The application of remote sensing techniques to sugarcane (Saccharum spp. hybrid) production: a review of the literature. Int J Remote Sens 29:3753–3767CrossRefGoogle Scholar
  2. Adam E, Mutanga O (2009) Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry. ISPRS J Photogramm Remote Sens 64:612–620CrossRefGoogle Scholar
  3. Aldakheel YY, Danson FM (1997) Spectral reflectance of dehydrating leaves: measurements and modelling. Int J Remote Sens 18:3683–3690CrossRefGoogle Scholar
  4. Anderson RR (1970) Spectral reflectance characteristics and automated data reduction techniques which identify wetland and water quality condition in the Chesapeake Bay, Third Annual Earth Resources Program 329. Johnson Space Center, USAGoogle Scholar
  5. Anderson JE (1995) Spectral signature of wetland plants (350–900). USA Army Topographic Engineering Centre, AlexandriaGoogle Scholar
  6. Artigas FJ, Yang J (2005) Hyperspectral remote sensing of marsh surface types and plant vigor gradients in New Jersey Meadowlands. Int J Remote Sens 26:5209–5220CrossRefGoogle Scholar
  7. Asner GP (1998) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens Environ 64:134–153CrossRefGoogle Scholar
  8. Becker BL, Lusch DP, Qi J (2005) Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second derivative analysis. Remote Sens Environ 97:238–248CrossRefGoogle Scholar
  9. Belluco E, Camuffo M, Ferrari S, Modenese L, Silvestri S, Marani A, Marani M (2006) Mapping salt-marsh vegetation by multispectral and Hyperspectral remote sensing. Remote Sens Environ 105:54–67CrossRefGoogle Scholar
  10. Berberoglu S, Lloyd CD, Atkinson PM, Curran PJ (2000) The integration of spectral and textural information using neural networks for land cover mapping in the Mediterranean. Comput Geosci 26:385–396CrossRefGoogle Scholar
  11. Best R, Wehde M, Linder R (1981) Spectral reflectance of hydrophytes. Remote Sens Environ 11:27–35CrossRefGoogle Scholar
  12. Blackburn GA, Pitman JI (1999) Biophysical controls on the directional reflectance properties of bracken (Pteridium aquilinum) canopies: results of field experiments. Int J Remote Sens 20:2265–2282CrossRefGoogle Scholar
  13. Carpenter GA, Gopal S, Macomber S, Martens S, Woodcock E (1999) A neural network method for mixture estimation for vegetation mapping. Remote Sens Environ 70:138–152CrossRefGoogle Scholar
  14. Ceccato P, Flasse S, Tarantola S, Jacquemoud S (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sens Environ 77:22–33CrossRefGoogle Scholar
  15. Clark AF (1999) Spectroscopy of rocks and minerals and principles of spectroscopy. In: Rancz AN (ed) Manuals of remote sensing: remote sensing for the earth sciences, vol 3. Wiley, New York, pp 3–58Google Scholar
  16. Clevers JGPW (1999) The use of imaging spectrometry for agricultural applications. ISPRS J Photogramm Remote Sensing 54:299–304CrossRefGoogle Scholar
  17. Clevers JGPW, Kooistra L (2006) Using spectral information at the NIR water absorption features to estimate canopy water content and biomass. In ISPRS mid-term symposium remote sensing: from pixels to processes, Enschede, The Netherlands, 8–11 May 2006, p 6Google Scholar
  18. Cochrane MA (2000) Using vegetation reflectance variability for species level classification of hyperspectral data. Int J Remote Sens 21:2075–2087CrossRefGoogle Scholar
  19. Darvishzadeh R, Skidmore A, Atzberger C, Wieren S (2008) Estimation of vegetation LAI from hyperspectral reflectance data: effects of soil type and plant architecture. Int J Appl Earth Obs Geoinform 10:358–373CrossRefGoogle Scholar
  20. Datt B (1999) Remote sensing of water content in Eucalyptus leaves. Aust J Bot 47:909–923CrossRefGoogle Scholar
  21. Daughtry CST, Walthall CL (1998) Spectral discrimination of Canabis sativa L. leaves and canopies. Remote Sens Environ 64:192–201CrossRefGoogle Scholar
  22. Davi H, Soudani K, Deckx T, Dufrene E, Le Dantec V, Francois C (2006) Estimation of forest leaf area index from SPOT imagery using NDVI distribution over forest stands. Int J Remote Sens 27:885–902CrossRefGoogle Scholar
  23. Davidson A, Wang S, Wilmshurst J (2006) Remote sensing of grassland–shrubland vegetation water content in the shortwave domain. Int J Appl Earth Obs Geoinform 8:225–236CrossRefGoogle Scholar
  24. Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submerged aquatic vegetation. Bioscience 43:86–94CrossRefGoogle Scholar
  25. Domacx A, Suzen ML (2006) Integration of environmental variables with satellite images in regional scale vegetation classification. Int J Remote Sens 27:1329–1350CrossRefGoogle Scholar
  26. Filippi AM, Jensen JR (2006) Fuzzy learning vector quantization for hyperspectral coastal vegetation classification. Remote Sens Environ 100:512–530CrossRefGoogle Scholar
  27. Fillella I, Penuelas J (1994) The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int J Remote Sens 15:1459–1470CrossRefGoogle Scholar
  28. Fyfe SK (2003) Spatial and temporal variation in spectral reflectance: are seagrasses spectrally distinct? Limnol Oceanogr 48:464–479CrossRefGoogle Scholar
  29. Gao BC (1996) NDWI-a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58:257–266CrossRefGoogle Scholar
  30. Gao X, Huete AR, Ni W, Miura T (2000) Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ 74:609–620CrossRefGoogle Scholar
  31. Gong P, Pu R, Miller JR (1995) Coniferous forest leaf area index estimation along the Oregon transect using compact airborne spectrographic imager data. Photogramm Eng Remote Sensing 61:1107–1117Google Scholar
  32. Gong P, Pu R, Biging G, Larrieu MR (2003) Estimation of forest leaf area index using vegetation indices derived from Hyperion hyperspectral data. IEEE Trans Geosci Remote Sen 41:1355–1362CrossRefGoogle Scholar
  33. Govender M, Chetty K, Bulcock H (2006) A review of hyperspectral remote sensing and its application in vegetation and water resource studies. http://www.wrc.org.za/downloads/watersa/2007/Apr%2007/2052.pdf. Accessed on 25 Sep 2008
  34. Green EP, Mumby PJ, Edwards AJ, Clark CD, Ellis AC (1997) Estimating leaf area index of mangroves from satellite data. Aquat Bot 58:11–19CrossRefGoogle Scholar
  35. Guyot G (1990) Optical properties of vegetation canopies. In: Steven MD, Clark JA (eds) Application of Remote Sensing in Agriculture. Butterworths, London, pp 19–44Google Scholar
  36. Hansen PM, Schjoerring JK (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86:542–553CrossRefGoogle Scholar
  37. Hardisky MA, Gross MF, Klemas V (1986) Remote sensing of coastal wetlands. Bioscience 36:453–460CrossRefGoogle Scholar
  38. Harvey KR, Hill JE (2001) Vegetation mapping of a tropical freshwater swamp in the Northern Territory, Australia: a comparison of aerial photography, Landsat TM and SPOT satellite imagery. Remote Sens Environ 22:2911–2925Google Scholar
  39. He C, Zhang Q, Li Y (2005) Zoning grassland protection area using remote sensing and cellular automata modeling—a case study in Xilingol steppe grassland in northern China. J Arid Environ 63:814–826CrossRefGoogle Scholar
  40. Hestir EL, Khanna S, Andrew ME, Santos MJ, Viers JH, Greenberg JA, Rajapakse SS, Ustin SL (2008) Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sens Environ 112:4034–4047CrossRefGoogle Scholar
  41. Howland WG (1980) Multispectral aerial photography for wetland vegetation mapping. Photogramm Eng Remote Sensing 46:87–99Google Scholar
  42. Johnston RM, Barson MM (1993) Remote sensing of Australian wetlands: an evaluation of Landsat TM data for inventory and classification. Aust J Mar Freshw Res 44:223–232CrossRefGoogle Scholar
  43. Kamaruzaman J, Kasawani I (2007) Imaging spectrometry on mangrove species identification and mapping in Malaysia. WSEAS Trans Biol Biomed 8:118–126Google Scholar
  44. Klemas V (2001) Remote sensing of landscape-level coastal environmental indicators. Environ Manage 27:47–57CrossRefPubMedGoogle Scholar
  45. Kokaly RF, Despain DG, Clark RN, Livo KE (2003) Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sens Environ 84:437–456CrossRefGoogle Scholar
  46. Kovacs JM, Flores-Verdugo F, Wang JF, Aspden LP (2004) Estimating leaf area index of a degraded mangrove forest using high spatial resolution satellite data. Aquat Bot 80:13–22CrossRefGoogle Scholar
  47. Kovacs JM, Wang JF, Flores-Verdugo F (2005) Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific. Estuar Coast Shelf Sci 62:377–384CrossRefGoogle Scholar
  48. Kumar L, Schmidt KS, Dury S, Skidmore AK (2001) Review of hyperspectral remote sensing and vegetation Science. In: Van Der Meer FD, De Jong SM (eds) Imaging spectrometry: basic principles and prospective applications. Kluwer, Dordrecht, The NetherlandsGoogle Scholar
  49. Lee KH, Lunetta RS (1996) Wetland detection methods. In: Lyon JG, McCarthy J (eds) Wetland and Environmental Application of GIS. Lewis Publishers, New York, pp 249–284Google Scholar
  50. Lehmann A, Lachavanne JB (1997) Geographic information system and remote sensing in aquatic botany. Aquat Bot 58:195–207CrossRefGoogle Scholar
  51. Li L, Ustin SL, Lay M (2005) Application of multiple endmember spectral mixture analysis (MESMA) to AVIRIS imagery for coastal salt marsh mapping: a case study in China Camp, CA, USA. Int J Remote Sens 26:5193–5207CrossRefGoogle Scholar
  52. Lin Y, Liquan Z (2006) Identification of the spectral characteristics of submerged plant Vallisneria spiralis. Acta Ecologica Sinica 26:1005–1011CrossRefGoogle Scholar
  53. Liu L, Wang J, Huang W, Zhao C, Zhang B, Tong Q (2004) Estimating winter wheat plant water content using red edge parameters. Int J Remote Sens 27:3331–3342CrossRefGoogle Scholar
  54. Malthus TJ, George DG (1997) Airborne remote sensing of macrophytes in Cefni reservoir, Anglesley, UK. Aquat Bot 58:317–332CrossRefGoogle Scholar
  55. May AMB, Pinder JE, Kroh GC (1997) A comparison of LANDSAT Thematic Mapper and SPOT multi-spectral imagery for the classification of shrub and meadow vegetation in Northern California, USA. Int J Remote Sens 18:3719–3728CrossRefGoogle Scholar
  56. McCarthy J, Gumbricht T, McCarthy TS (2005) Ecoregion classification in the Okavango Delta, Botswana from multitemporal remote sensing. Int J Remote Sens 26:4339–4357CrossRefGoogle Scholar
  57. Milton EJ, Schaepman ME, Anderson K, Kneubühler M, Fox N (2007) Progress in field spectroscopy. Remote Sens Environ 113:S92–S109CrossRefGoogle Scholar
  58. Moreau S, Bosseno R, Gu FX, Baret F et al (2003) Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sens Environ 85:516–529CrossRefGoogle Scholar
  59. Mutanga O, Kumar L (2007) Estimating and mapping grass phosphorus concentration in an African savanna using hyperspectral image data. Int J Remote Sens 28:4897–4911CrossRefGoogle Scholar
  60. Mutanga O, Skidmore AK (2004) Narrow band vegetation indices solve the saturation problem in biomass estimation. Int J Remote Sens 25:3999–4014CrossRefGoogle Scholar
  61. Mutanga O, Skidmore AK (2007) Red edge shift and biochemical content in grass canopies. ISPRS J Photogramm Remote Sensing 62:34–42CrossRefGoogle Scholar
  62. Mutanga O, Skidmore AK, van Wieren S (2003) Discriminating tropical grass Cenchrus ciliaris canopies grown under different nitrogen treatments using spectroradiometry. ISPRS J Photogramm Remote Sensing 57:263–272CrossRefGoogle Scholar
  63. Mutanga O, Skidmore AK, Prins HHT (2004) Predicting in situ pasture quality in the Kruger National Park, South Africa using continuum removed absorption features. Remote Sens Environ 89:393–408CrossRefGoogle Scholar
  64. Nagler PL, Glenn EP, Huete AR (2001) Assessment of spectral vegetation indices for riparian vegetation in the Colorado River delta, Mexico. J Arid Environ 49:91–110CrossRefGoogle Scholar
  65. Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetland. Wetl Ecol Manage 10:381–402CrossRefGoogle Scholar
  66. Pay SS, Das G, Singh JP, Panigrahy S (2006) Evaluation of hyperspectral indices for LAI estimation and discrimination of potato crop under different irrigation treatments. Int J Remote Sens 27:5373–5387CrossRefGoogle Scholar
  67. Pengra BW, Johnston CA, Loveland TR (2007) Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sens Environ 108:74–81CrossRefGoogle Scholar
  68. Penuelas J, Blanchard B, Blanchard A (1993a) Assessing community type, plant biomass, pigment composition and photosynthetic efficiency of aquatic vegetation from spectral reflectance. Remote Sens Environ 46:110–118CrossRefGoogle Scholar
  69. Penuelas J, Filella I, Biel C, Serrano L, Save R (1993b) The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens 14:1887–1905CrossRefGoogle Scholar
  70. Price JC (1992) Variability of high resolution crop reflectance spectra. Int J Remote Sens 14:2593–2610CrossRefGoogle Scholar
  71. Price JC (1994) How unique are spectral signatures? Remote Sens Environ 49:181–186CrossRefGoogle Scholar
  72. Proisy C, Couteron P, Fromard F (2007) Predicting and mapping mangrove biomass from canopy grain analysis using Fourier-based textural ordination of IKONOS images. Remote Sens Environ 109:379–392CrossRefGoogle Scholar
  73. Pu R, Yu Q, Gong P, Biging GS (2005) EO-1 Hyperion, ALI and Landsat 7 ETM+ data comparison for estimating forest crown closure and leaf area index. Int J Remote Sens 26:457–474CrossRefGoogle Scholar
  74. Ramsey EW, Jensen JR (1996) Remote sensing of mangrove wetlands: relating canopy spectra to site-specific data. Photogramm Eng Remote Sensing 62:939–948Google Scholar
  75. Rendong L, Jiyuan L (2004) Estimating wetland vegetation biomass in the Poyang Lake of central China from Landsat ETM data. IEEE Trans Geosci Remote Sen 4:4590–4593 (IGARSS apos)Google Scholar
  76. Ringrose S, Vanderpost C, Matheson W (2003) Mapping ecological conditions in the Okavango delta, Botswana using fine and coarse resolution systems including simulated SPOT vegetation imagery. Int J Remote Sens 24:1366–5901CrossRefGoogle Scholar
  77. Rosso PH, Ustin SL, Hastings A (2005) Mapping marshland vegetation of San Francisco Bay, California, using hyperspectral data. Int J Remote Sens 26:5169–5191CrossRefGoogle Scholar
  78. Sawaya KE, Olmanson LG, Heinert NJ, Brezonik PL, Bauer ME (2003) Extending satellite remote sensing to local scales: land and water resource monitoring using high-resolution imagery. Remote Sens Environ 88:144–156CrossRefGoogle Scholar
  79. Schlerf M, Atzberger C, Hill J (2005) Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ 95:177–194CrossRefGoogle Scholar
  80. Schmidt KS, Skidmore AK (2003) Spectral discrimination of vegetation types in a coastal wetland. Remote Sens Environ 85:92–108CrossRefGoogle Scholar
  81. Seher J, Tueller P (1973) Colour aerial photos for marshland. Photogramm Eng Remote Sensing 39:489–499Google Scholar
  82. Sha Z, Bai Y, Xie Y (2008) Using a hybrid fuzzy classifier (HFC) to map typical grassland vegetation in Xilinhe River Basin, Inner Mongolia, China. Int J Remote Sens 29:2317–2337CrossRefGoogle Scholar
  83. Shaikh M, Green D, Cross H (2001) A remote sensing approach to determine environmental flow for wetlands of lower Darling River, New South Wales, Australia. Int J Remote Sens 22:1737–1751CrossRefGoogle Scholar
  84. Shima LJ, Anderson RR, Carter VP et al (1976) The use of aerial color infrared photography in mapping the vegetation of freshwater marsh. Chesap Sci 17:74–85CrossRefGoogle Scholar
  85. Silva TSF, Costa MPF, Melack JM, Novo E (2008) Remote sensing of aquatic vegetation: theory and applications. Environ Monit Assess 140:131–145CrossRefPubMedGoogle Scholar
  86. Stimson HC, Breshears DD, Ustin SL, Kefauver SC (2005) Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens Environ 96:108–118CrossRefGoogle Scholar
  87. Tan Q, Shao Y, Yang S, Wei Q (2003) Wetland vegetation biomass estimation using Landsat-7 ETM+ data. IEEE Trans Geosci Remote Sen 03(4):2629–2631 IGARSS aposGoogle Scholar
  88. Thenkabail PS, Smith RB, Pauw EP (2000) Hyperspectral vegetation indices and their relationship with agricultural characteristics. Remote Sens Environ 71:158–182CrossRefGoogle Scholar
  89. Thenkabail PS, Smith RB, De Pauw E (2002) Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogramm Eng Remote Sensing 68:607–621Google Scholar
  90. Thenkabail PS, Enclona EA, Ashton MS, Van Der Meer B (2004) Accuracy assessments of hyperspectral waveband performance for vegetation analysis applications. Remote Sens Environ 91:354–376CrossRefGoogle Scholar
  91. Toomey MP, Vierling LA (2006) Estimating equivalent water thickness in a conifer forest using Landsat TM and ASTER data: a comparison study. Can J Remote Sens 32:288–299Google Scholar
  92. Vaiphasa C, Ongsomwang S, Vaiphasa T, Skidmore AK (2005) Tropical mangrove species discrimination using hyperspectral data: a laboratory study. Estuar Coast Shelf Sci 65:371–379CrossRefGoogle Scholar
  93. Vaiphasa CK, Skidmore KA, de Boer WF, Vaiphasa T (2007) A hyperspectral band selector for plant species discrimination. ISPRS J Photogramm Remote Sensing 62:225–235CrossRefGoogle Scholar
  94. Wang C, Menenti M, Stoll M, Belluco E, Marani M (2007) Mapping mixed vegetation communities in salt marshes using airborne spectral data. Remote Sens Environ 107:559–570CrossRefGoogle Scholar
  95. Xie Y, Sha Z, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. J Plant Ecol 1:9–23CrossRefGoogle Scholar
  96. Xu M, Watanachaturaporn P, Varshney PK (2005) Decision tree regression for soft classification of remote sensing data. Remote Sens Environ 97:322–336CrossRefGoogle Scholar
  97. Yang X (2007) Integrated use of remote sensing and geographic information systems in riparian vegetation delineation and mapping. Int J Remote Sens 28:353–370CrossRefGoogle Scholar
  98. Zhang J, Foody GM (1998) A fuzzy classification of sub-urban land cover from remotely sensed imagery. Int J Remote Sens 19:2721–2738CrossRefGoogle Scholar
  99. Zheng D, Rademacher J, Chen J, Crow T, Bresee M, Le Moine J, Ryu S (2004) Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens Environ 93:402–411CrossRefGoogle Scholar
  100. Zomer RJ, Trabucco A, Ustin SL (2008) Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing. J Environ Manage 90:2170–2177CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Discipline of GeographyUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  2. 2.Geography DepartmentElfashir UniversityElfashirSudan
  3. 3.Centre for Environment, Agriculture & Development (CEAD)University of KwaZulu-NatalPietermaritzburgSouth Africa

Personalised recommendations