Wetlands Ecology and Management

, Volume 18, Issue 5, pp 573–586 | Cite as

Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions

  • William J. Mitsch
  • Amanda Nahlik
  • Piotr Wolski
  • Blanca Bernal
  • Li Zhang
  • Lars Ramberg
Original Paper


This paper summarizes the importance of climate on tropical wetlands. Regional hydrology and carbon dynamics in many of these wetlands could shift with dramatic changes in these major carbon storages if the inter-tropical convergence zone (ITCZ) were to change in its annual patterns. The importance of seasonal pulsing hydrology on many tropical wetlands, which can be caused by watershed activities, orographic features, or monsoonal pulses from the ITCZ, is illustrated by both annual and 30-year patterns of hydrology in the Okavango Delta in southern Africa. Current studies on carbon biogeochemistry in Central America are attempting to determine the rates of carbon sequestration in tropical wetlands compared to temperate wetlands and the effects of hydrologic conditions on methane generation in these wetlands. Using the same field and lab techniques, we estimated that a humid tropical wetland in Costa Rica accumulated 255 g C m−2 year−1 in the past 42 years, 80% more than a similar temperate wetland in Ohio that accumulated 142 g C m−2 year−1 over the same period. Methane emissions averaged 1,080 mg-C m−2 day−1 in a seasonally pulsed wetland in western Costa Rica, a rate higher than methane emission rates measured over the same period from humid tropic wetlands in eastern Costa Rica (120–278 mg-C m−2 day−1). Tropical wetlands are often tuned to seasonal pulses of water caused by the seasonal movement of the ITCZ and are the most likely to be have higher fire frequency and changed methane emissions and carbon oxidation if the ITCZ were to change even slightly.


Botswana Carbon sequestration Climate change Costa Rica Fire ecology Inter-tropical convergence zone (ITCZ) Methane emissions Monsoonal wetlands Okavango Delta Pulsing hydrology Tropical swamps 



This research was partially supported by the U.S. Department of Energy Grant DE-FG02-04ER63834 (EARTH University/OSU Program on Collaborative Environmental Research in the Humid Tropics; D Hansen, PI); the U.S. Environmental Protection Agency grant EM-83329801-0 (Olentangy River Wetland Research Park: Teaching, research and outreach; W Mitsch, PI); a 2007 Fulbright Senior Specialist grant (Project 2426 to WJ Mitsch) for collaboration with the Harry Oppenheimer Okavango Research Centre, University of Botswana; and by support from the Olentangy River Wetland Research Park, The Ohio State University. We were assisted in so many ways by Bert Kohlmann, Carlos Hernandez, and Jane Yeomans of EARTH University, Costa Rica; by John Holm, University of Botswana; and by Dave Klarer, Old Woman Creek National Estuarine Research Reserve, Huron, Ohio, USA. This paper is based on an invited presentation at the Society of Wetland Scientists (SWS) 2007 conference in Sacramento, CA. Anne Mischo kindly prepared some of the illustrations. Olentangy River Wetland Research Park Publication 2010–001.


  1. Altor AE, Mitsch WJ (2006) Methane flux from created wetlands: relationship to intermittent versus continuous inundation and emergent macrophytes. Ecol Eng 28:224–234. doi: 10.1016/j.ecoleng.2006.06.006 CrossRefGoogle Scholar
  2. Altor AE, Mitsch WJ (2008) Pulsing hydrology, methane emissions, and carbon dioxide fluxes in created marshes: a 2-year ecosystem study. Wetlands 28:423–438. doi: 10.1672/07-98.1 CrossRefGoogle Scholar
  3. Anderson CJ, Mitsch WJ (2006) Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands 26:779–792. doi: 10.1672/0277-5212(2006)26[779:SCANAA]2.0.CO;2 CrossRefGoogle Scholar
  4. Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. J Atmos Chem 8:307–358. doi: 10.1007/BF00052709 CrossRefGoogle Scholar
  5. Bergamaschi P, Frankenberg C, Meirink JF, Krol M, Dentener F, Wagner T, Platt U, Kaplan JO, Körner S, Heimann M, Dlugokencky EJ, Goede A (2007) Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations. J Geophys Res 112:D02304. doi:  10.1029/2006JD007268
  6. Bernal B, Mitsch WJ (2008a) Comparing carbon sequestration rates in tropical and temperate wetlands using radiometric dating. Abstracts, Soil Science Society of America/Geological Society of America Annual Meeting, Houston TXGoogle Scholar
  7. Bernal B, Mitsch WJ (2008b) A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecol Eng 34:311–323. doi: 10.1016/j.ecoleng.2008.09.005 CrossRefGoogle Scholar
  8. Cassidy L (2003) Anthropogenic burning in the Okavango Panhandle of Botswana: livelihoods and spatial dimensions. MS thesis, The Graduate School, University of Florida, GainesvilleGoogle Scholar
  9. Delaune RD, Pezeshki S (2003) The role of soil organic carbon in maintaining surface elevation in rapidly subsiding U.S. Gulf of Mexico coastal marshes. Water Air Soil Pollut 3:167–179Google Scholar
  10. Euliss NH, Gleason RA, Olness A, McDougal RL, Murkin HR, Robarts RD, Bourbonniere RA, Warner BG (2006) North American prairie wetlands are important nonforested land-based carbon storage sites. Sci Total Environ 361:179–188. doi: 10.1016/j.scitotenv.2005.06.007 CrossRefPubMedGoogle Scholar
  11. Finlayson M, Davidson NC (1999) Global review of wetland resources and priorities for wetland inventory. Ramsar Bureau Contract 56. Ramsar Convention Bureau, GlandGoogle Scholar
  12. Frankenberg C, Meirink JF, van Weele M, Platt U, Wagner T (2005) Assessing methane emissions from global space-borne observations. Science 308:1010–1014. doi: 10.1126/science.1106644 CrossRefPubMedGoogle Scholar
  13. Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195. doi: 10.2307/1941811 CrossRefGoogle Scholar
  14. Hadi A, Inubushi K, Furukawa Y, Purnomo E, Rasmadi M, Tsuruta H (2005) Greenhouse gas emissions from tropical peatlands of Kalimantan, Indonesia. Nutr Cycl Agroecosyst 71:73–80. doi: 10.1007/s10705-004-0380-2 CrossRefGoogle Scholar
  15. Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns in South American floodplains. J Geophys Res 107(D20):8038. doi:  10.1029/2000JD000306 Google Scholar
  16. Heinl M (2005) Fire regime and vegetation response in the Okavango Delta, Botswana. PhD dissertation, Department fur Okologie, Technische Universitat MunchenGoogle Scholar
  17. Heinl M, Neuenschwander A, Sliva J, Vanderpost C (2006) Interactions between fire and flooding in a southern African floodplain system (Okavango Delta, Botswana). Landscape Ecol 21:699–709. doi: 10.1007/s10980-005-5243-y CrossRefGoogle Scholar
  18. Heinl M, Frost P, Vanderpost C, Sliva J (2007) Fire activity on dryland and floodplains in the southern Okavango Delta, Botswana. J Arid Environ 68:77–87. doi: 10.1016/j.jaridenv.2005.10.023 CrossRefGoogle Scholar
  19. Hemond HF (1980) Biogeochemistry of Thoreau’s Bog, Concord, Mass. Ecol Monogr 50:507–526. doi: 10.2307/1942655 CrossRefGoogle Scholar
  20. IPCC (2007) IPPC fourth assessment report. Intergovernmental panel on climate change. Cambridge University Press, UKGoogle Scholar
  21. Jauhiainen J, Takahashi H, Heikkinen JEP, Martikainen PJ, Vasander H (2005) Carbon fluxes from a tropical peat swamp forest floor. Glob Change Biol 11:1788–1797. doi: 10.1111/j.1365-2486.2005.001031.x CrossRefGoogle Scholar
  22. Jones MB, Humphries SW (2002) Impacts of the C4 sedge Cyperus papyrus L. on carbon and water fluxes in an African wetland. Hydrobiologia 488:107–113. doi: 10.1023/A:1023370329097 CrossRefGoogle Scholar
  23. Keppler F, Hamilton JTG, Brass M, Röckmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191. doi: 10.1038/nature04420 CrossRefPubMedGoogle Scholar
  24. Khan S, Ganguly AR, Bandyopadhyay S, Saigal S, Erickson DJ III, Protopopescu V, Ostrouchov G (2006) Nonlinear statistics reveals stronger ties between ENSO and the tropical hydrological cycle. Geophys Res Lett 33:L24402. doi: 10.1029/2006GL027941 CrossRefGoogle Scholar
  25. Kohlmann B, Mitsch WJ, Hansen DO (2008) Ecological management and sustainable development in the humid tropics of Costa Rica. Ecol Eng 34:254–266. doi: 10.1016/j.ecoleng.2008.09.004 CrossRefGoogle Scholar
  26. Lal R (2004) Soil carbon sequestration impacts on global climate change and food security. Science 304:1623–1627. doi: 10.1126/science.1097396 CrossRefPubMedGoogle Scholar
  27. Lal R (2008) Carbon sequestration. Philos Trans R Soc B 363:815–830. doi: 10.1098/rstb.2007.2185 CrossRefGoogle Scholar
  28. Lanting F (1993) Okavango: Africa’s Last Eden. Chronicle Books, San FranciscoGoogle Scholar
  29. Lehner B, Döll P (2004) Development and validation of a global database of lakes, reservoirs, and wetlands. J Hydrol (Amst) 296:1–22. doi: 10.1016/j.jhydrol.2004.03.028 CrossRefGoogle Scholar
  30. Malmer N (1975) Development of bog mires. In: Hasler AD (ed) Coupling of land and water systems. Springer, New York, pp 85–92Google Scholar
  31. Maltby E, Turner RE (1983) Wetlands of the world. Geogr Mag 55:12–17Google Scholar
  32. Matthews E, Fung I (1987) Methane emissions from natural wetlands: global distribution, area, and environmental characteristics of sources. Global Biogeochem Cycles 1:61–86. doi: 10.1029/GB001i001p00061 CrossRefGoogle Scholar
  33. Megonigal JP, Hines ME, Visscher PT (2004) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger WH (ed) Biogeochemistry. Elsevier-Pergamon, Oxford, pp 317–424Google Scholar
  34. Melack JM, Hess LL, Gastil M, Forsberg BR, Hamilton SK, Lima IBT, Novo EMLM (2004) Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Glob Change Biol 10:530–544. doi: 10.1111/j.1365-2486.2004.00763.x CrossRefGoogle Scholar
  35. Mitra S, Wassmann R, Vlek PLG (2005) An appraisal of global wetland area and its organic carbon stock. Curr Sci 88:25–35Google Scholar
  36. Mitsch WJ, Gosselink JG (2007) Wetlands, 4th edn. Wiley, New York, p 582Google Scholar
  37. Mitsch WJ, Wu X (1995) Wetlands and global change. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Advances in soil science, soil management and greenhouse effect. Lewis Publishers, Boca Raton, pp 205–230Google Scholar
  38. Mitsch WJ, Tejada J, Nahlik AM, Kohlmann B, Bernal B, Hernández CE (2008) Tropical wetlands for climate change research, water quality management and conservation education on a university campus in Costa Rica. Ecol Eng 34:276–288. doi: 10.1016/j.ecoleng.2008.07.012 CrossRefGoogle Scholar
  39. Ovenden L (1990) Peat accumulation in northern wetlands. Quat Res 33:377–386. doi: 10.1016/0033-5894(90)90063-Q CrossRefGoogle Scholar
  40. Page SE, Wust RAJ, Weiss D, Rieley JO, Shotyk W, Limin SH (2004) A record of late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): Implications for past, present, and future carbon dynamics. J Quat Sci 19:625–635. doi: 10.1002/jqs.884 CrossRefGoogle Scholar
  41. Prigent C, Papa F, Aires F, Rossow WB, Matthews E (2007) Global inundation dynamics inferred from multiple satellite observations, 1993–2000. J Geophys Res 112:D12107. doi: 10.1029/2006JD007847 CrossRefGoogle Scholar
  42. Ramberg L, Hancock P, Lindholm M, Meyer T, Ringrose S, Silva J, Van As J, VanderPost C (2006a) Species diversity of the Okavango Delta, Botswana. Aquat Sci 68:310–337. doi: 10.1007/s00027-006-0857-y CrossRefGoogle Scholar
  43. Ramberg L, Wolski P, Krah M (2006b) Water balance and infiltration in a seasonal floodplain in the Okavango Delta, Botswana. Wetlands 26:677–690. doi: 10.1672/0277-5212(2006)26[677:WBAIIA]2.0.CO;2 CrossRefGoogle Scholar
  44. Ramberg L, Lindholm M, Bonyongo C, Hessen DO, Heinl M, Masamba W, Murray-Hudson M, VanderPost C, Wolski P (2009) Aquatic ecosystem responses to fire and flood size in the Okavango Delta–Natural experiments on seasonal floodplains. Wetland Ecology and Management (submitted for this same special issue)Google Scholar
  45. Ramsar Convention Secretariat (2004) Ramsar Handbook for the Wise Use of Wetlands. Handbook 10, Wetland inventory: a ramsar framework for wetland inventory, 2nd edn. Ramsar Secretariat, Gland, SwitzerlandGoogle Scholar
  46. Saunders MJ, Jones MB, Kansiime F (2007) Carbon and water cycles in tropical papyrus wetlands. Wetlands Ecol Manage 15:489–498. doi: 10.1007/s11273-007-9051-9 CrossRefGoogle Scholar
  47. Shindell DT, Walter BP, Faluvegi G (2004) Impacts of climate change on methane emissions from wetlands. Geophys Res Lett 31:L21202. doi: 10.1029/2004GL021009 CrossRefGoogle Scholar
  48. Sorrell BK, Boon PI (1992) Biogeochemistry of billabong sediments. II. Seasonal variations in methane production. Freshw Biol 27:435–445. doi: 10.1111/j.1365-2427.1992.tb00552.x CrossRefGoogle Scholar
  49. Strack M (ed) (2008) Peatlands and climate change. International Peat Society, Jyvaskyla 223 ppGoogle Scholar
  50. Turunen J, Tomppo E, Tolonen K, Reinkainen E (2002) Estimating carbon accumulation rates of undrained mires in Finland: application to boreal and subarctic regions. Holocene 12:79–90. doi: 10.1191/0959683602hl522rp CrossRefGoogle Scholar
  51. Tyson PD, Cooper GRJ, McCarthy TS (2002) Millennial to multi-decadal variability in the climate of southern Africa. Int J Climatol 22:1105–1117. doi: 10.1002/joc.787 CrossRefGoogle Scholar
  52. Walter KM, Zimov SA, Chanton JP, Verbyla D, Chapin FS III (2006) Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443:71–75. doi: 10.1038/nature05040 CrossRefPubMedGoogle Scholar
  53. Whalen SC (2005) Biogeochemistry of methane exchange between natural wetlands and the atmosphere. Environ Eng Sci 22:73–94. doi: 10.1089/ees.2005.22.73 CrossRefGoogle Scholar
  54. Wieder K, Vitt D (eds) (2006) Boreal peatland ecosystems. Springer, HeidelbergGoogle Scholar
  55. Wolski P, Savenije H, Murray-Hudson M, Gumbricht T (2006) Modelling the hydrology of the Okavango Delta, Botswana using a hybrid GIS-reservoir model. J Hydrol (Amst) 331:58–72. doi: 10.1016/j.jhydrol.2006.04.040 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • William J. Mitsch
    • 1
  • Amanda Nahlik
    • 1
  • Piotr Wolski
    • 2
  • Blanca Bernal
    • 1
  • Li Zhang
    • 1
  • Lars Ramberg
    • 2
  1. 1.Wilma H. Schiermeier Olentangy River Wetland Research Park, School of Environment and Natural ResourcesThe Ohio State UniversityColumbusUSA
  2. 2.Harry Oppenheimer Okavango Research CentreUniversity of BotswanaMaunBotswana

Personalised recommendations