Wetlands Ecology and Management

, Volume 18, Issue 1, pp 1–16 | Cite as

Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

Original Paper

Abstract

Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in two re-established wetlands in the Sacramento San-Joaquin River Delta, California for 9 years after flooding to determine how relatively small differences in water depth affect carbon storage rates over time. To estimate annual carbon inputs, plant species cover, standing above- and below-ground plant biomass, and annual biomass turnover rates were measured, and allometric biomass models for Schoenoplectus (Scirpus) acutus and Typha spp., the emergent marsh dominants, were developed. As the wetlands developed, environmental factors, including water temperature, depth, and pH were measured. Emergent marsh vegetation colonized the shallow wetland more rapidly than the deeper wetland. This is important to potential carbon storage because emergent marsh vegetation is more productive, and less labile, than submerged and floating vegetation. Primary production of emergent marsh vegetation ranged from 1.3 to 3.2 kg of carbon per square meter annually; and, mid-season standing live biomass represented about half of the annual primary production. Changes in species composition occurred in both submerged and emergent plant communities as the wetlands matured. Water depth, temperature, and pH were lower in areas with emergent marsh vegetation compared to submerged vegetation, all of which, in turn, can affect carbon cycling and storage rates.

Keywords

Freshwater wetland Emergent marsh Primary productivity Biomass Typha Schoenoplectus acutus 

Notes

Acknowledgments

We owe great thanks to the California Department of Water Resources for long-term funding of this long-term research project. And, we would like to specially thank Lauren Hastings for her hard work getting the project started. Also, thanks to the many people who helped with data collection and site maintenance and repair on this study over all the years. Finally, thanks to Allison Brown, Lisa Marie Windham Myers, and the reviewers for Wetlands, Ecology, and Management for their helpful comments and suggestions for this manuscript. It is all greatly appreciated.

References

  1. Adams MS, McCracken MD (1974) Seasonal production of the Myriophyllum component of the littoral of Lake Wingra, Wisconsin. J Ecol 62(2):457–465. doi: 10.2307/2258991 CrossRefGoogle Scholar
  2. Asaeda T, Sharma P, Rajapakse L (2008) Seasonal patterns of carbohydrate translocation and synthesis of structural carbon components in Typha Angustifolia. Hydrobiologia 607:87–101. doi: 10.1007/s10750-008-9369-1 CrossRefGoogle Scholar
  3. Atwater BF (1980) Attempts to correlate the late quaternary climatic records between San Francisco Bay, the Sacramento-San Joaquin Delta, and the Mokelomne. Ph.D. dissertation, University of DelawareGoogle Scholar
  4. Battle JM, Golladay SW (2001) Hydroperiod influence on breakdown of leaf litter in cypress-gum wetlands. Am Midl Nat 146:128–145. doi: 10.1674/0003-0031(2001)146[0128:HIOBOL]2.0.CO;2 CrossRefGoogle Scholar
  5. Best EPH, Visser HWC (1986) Seasonal growth of the submerged macrophyte Ceratophyllum demersum L. in mesotrophic Lake Vechen in relation to isolation, temperature and reserve carbohydrates. Hydrobiologia 148(3):231–243. doi: 10.1007/BF00017526 CrossRefGoogle Scholar
  6. Bradbury IK, Hofstra G (1976) Vegetation death and its importance to primary production measurements. Ecology 57:209–211. doi: 10.2307/1936414 CrossRefGoogle Scholar
  7. Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24(11):1089–1099. doi: 10.1016/0038-0717(92)90058-6 CrossRefGoogle Scholar
  8. Brinson MM, Lugo AE, Brown S (1981) Primary productivity, decomposition, and consumer activity in freshwater wetlands. Annu Rev Ecol Syst 12:123–161. doi: 10.1146/annurev.es.12.110181.001011 CrossRefGoogle Scholar
  9. Brueske CC, Barrett CW (1994) Effects of vegetation and hydrologic load on sedimentation patterns in experimental wetland systems. Ecol Eng 3:429–447. doi: 10.1016/0925-8574(94)00011-5 CrossRefGoogle Scholar
  10. Carillo Y, Guarin A, Guillot G (2006) Biomass distribution, growth and decay of Egeria densa in a tropical high-mountain reservoir (NEUSA, Columbia). Aquat Bot 85:7–15. doi: 10.1016/j.aquabot.2006.01.006 CrossRefGoogle Scholar
  11. Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol 147:237–250. doi: 10.1023/A:1009875226637 CrossRefGoogle Scholar
  12. Chen R, Twilley RR (1999) A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44:93–118Google Scholar
  13. Chimner RA, Ewel KC (2005) A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetlands Ecol Manag 13:671–684. doi: 10.1007/s11273-005-0965-9 CrossRefGoogle Scholar
  14. Chimner RA, Cooper DJ, Parton WJ (2002) Modeling carbon accumulation in Rocky Mountain fens. Wetlands 22(1):100–110. doi: 10.1672/0277-5212(2002)022[0100:MCAIRM]2.0.CO;2 CrossRefGoogle Scholar
  15. Corstanje R, Reddy KR, Portier KM (2006) Typha latifolia and Cladium jamaicense litter decay in response to exogenous nutrient enrichment. Aquat Bot 84:70–78. doi: 10.1016/j.aquabot.2005.07.013 CrossRefGoogle Scholar
  16. Craft CB, Richardson CJ (1993) Peat accretion and N, P and organic C accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecol Appl 3(3):446–458. doi: 10.2307/1941914 CrossRefGoogle Scholar
  17. Davis SM (1990) Sawgrass and cattail production in relation to nutrient supply in the Everglades. In: Sharitz RR, Gibbons JW (eds) Freshwater wetlands and wildlife. Office of Scientific and Technical Information, U.S. Department of Energy, Oak Ridge, pp 325–341Google Scholar
  18. Davis CB, van der Valk AG (1978) The decomposition of standing and fallen litter of Typha glauca and Scirpus fluviatilis. Can J Bot 56:662–674. doi: 10.1139/b78-073 CrossRefGoogle Scholar
  19. de Leeuw J, Wielemaker A, de Munck W, Herman PM (1996) Net aerial primary production (NAPP) of the marsh macrophyte Scirpus maritimus estimated by a combination of destructive and non-destructive sampling methods. Hydrobiologia 123:101–108Google Scholar
  20. Deverel SJ, Rojstaczer S (1996) Subsidence of agricultural lands in the Sacramento-San Joaquin Delta, California: role of aqueous and gaseous carbon fluxes. Water Resour Res 32:2359–2367. doi: 10.1029/96WR01338 CrossRefGoogle Scholar
  21. Deverel SJ, Wang B, Rojstaczer S (1998) Subsidence of organic soils, Sacramento-San Joaquin Delta, CA. In: Borchers JW (ed) Land subsidence histories and current research. Proceedings of the Dr. Joseph F. Poland symposium. Association of Engineering Geologist special publication no. 8. Star Publishing Co., Belmont, pp 489–502Google Scholar
  22. Dickerman JA, Stewart AA, Wetzel RG (1986) Estimates of net annual aboveground production: sensitivity to sampling frequency. Ecology 67(3):650–659. doi: 10.2307/1937689 CrossRefGoogle Scholar
  23. Ennabili A, Ater M, Radoux M (1998) Biomass production and NPK retention in macrophytes from wetlands of the Tingitan Peninsula. Aquat Bot 62:45–56. doi: 10.1016/S0304-3770(98)00075-8 CrossRefGoogle Scholar
  24. Fraser LH, Kernezis JP (2005) A comparative assessment of seedling survival and biomass accumulation for fourteen different wetland plant species grown under minor water-depth differences. Wetlands 25(3):520–530. doi: 10.1672/0277-5212(2005)025[0520:ACAOSS]2.0.CO;2 CrossRefGoogle Scholar
  25. Frockling S, Roulet NT, Moore TR, Richard PJH, Richard PJH, Lavoie M, Muller SD (2001) Modeling northern peatland decomposition and peat accumulation. Ecosystems (N Y, Print) 4(5):479–498. doi: 10.1007/s10021-001-0105-1 CrossRefGoogle Scholar
  26. Garbey C, Thiebaut G, Muller S (2006) An experimental study of the plastic responses of Ranunuculus peltatus Schrank to four environmental parameters. Hydrobiologia 570:41–46. doi: 10.1007/s10750-006-0159-3 CrossRefGoogle Scholar
  27. Garver FG, Dubbe DR, Pratt DC (1988) Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp. Aquat Bot 32:115–127. doi: 10.1016/0304-3770(88)90092-7 CrossRefGoogle Scholar
  28. Gill RA, Jackson RB (2000) Global patterns of root turnover for terrestrial ecosystems. New Phytol 147:3–31. doi: 10.1046/j.1469-8137.2000.00676.x CrossRefGoogle Scholar
  29. Giroux JF, Bedard J (1988) Estimating above- and below-ground macrophyte production in Scirpus tidal marshes. Can J Bot 66:368–374. doi: 10.1139/b88-059 CrossRefGoogle Scholar
  30. Gordon DM, Sand-Jensen K (1990) Effects of O2, pH and DIC on net-O2 evolution by marine macroalgae. Mar Biol (Berl) 106:445–451. doi: 10.1007/BF01344325 CrossRefGoogle Scholar
  31. Gosselink JG, Turner RE (1978) The role of hydrology in freshwater wetland ecosystems. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New YorkGoogle Scholar
  32. Grace JB (1989) Effects of water depth on Typha latifolia and Typha domingensis. Am J Bot 76(5):762–768. doi: 10.2307/2444423 CrossRefGoogle Scholar
  33. Harter SK, Mitsch WJ (2003) Patterns of short-term sedimentation in a freshwater created marsh. J Environ Qual 32:325–334PubMedGoogle Scholar
  34. Hietz P (1992) Decomposition and nutrient dynamics of reed (Phragmites austalis (Cav.) Trin. Ex Steud.) litter in Lake Neusiedl, Austria. Aquat Bot 43:211–230. doi: 10.1016/0304-3770(92)90068-T CrossRefGoogle Scholar
  35. Karagatzides JD, Hutchinson I (1991) Intraspecific comparisons of biomass dynamics in Scirpus americanus and Scirpus maritimus on the Fraser River Delta. J Ecol 79:459–476. doi: 10.2307/2260726 CrossRefGoogle Scholar
  36. Keddy PA, Ellis TH (1985) Seedling recruitment of 11 wetland plant species along a water level gradient: shared or distinct responses? Can J Bot 63:1876–1879CrossRefGoogle Scholar
  37. Kirby CJ, Gosselink JG (1976) Primary production in a Louisiana gulf coast Spartina alterniflora marsh. Ecology 57:1052–1059. doi: 10.2307/1941070 CrossRefGoogle Scholar
  38. Klopatek JM, Stearns FW (1978) Primary productivity of emergent marsh macrophytes in a Wisconsin freshwater marsh ecosystem. Am Midl Nat 100(2):320–332. doi: 10.2307/2424831 CrossRefGoogle Scholar
  39. Lee SY (1990) Net aerial primary productivity, litter production and decomposition of the reed Phragmites communis in a nature reserve in Hong Kong: management implications. Mar Ecol Prog Ser 66:161–173. doi: 10.3354/meps066161 CrossRefGoogle Scholar
  40. Linthurst RA, Reimold RJ (1978a) An evaluation of methods for estimating net aerial primary productivity of estuarine angiosperms. J Appl Ecol 15:919–931. doi: 10.2307/2402787 CrossRefGoogle Scholar
  41. Linthurst RA, Reimold RJ (1978b) Estimated net aerial primary productivity for selected estuarine angiosperms in Maine, Delaware, and Georgia. Ecology 59(5):945–955. doi: 10.2307/1938546 CrossRefGoogle Scholar
  42. McNaughton SJ (1975) r- and K-selection in Typha. Am Nat 109:251–262. doi: 10.1086/282995 CrossRefGoogle Scholar
  43. Miao S, Sindhoj E, Edelstein C (2008) Allometric relationships of field populations of two clonal species with contrasting life histories, Cladium jamaicense and Typha domingensis. Aquat Bot 88:1–9. doi: 10.1016/j.aquabot.2007.08.001 CrossRefGoogle Scholar
  44. Middleton BA, McKee KL (2001) Degradation of mangrove tissues and implications for peat formation in Belizean island forests. J Ecol 89:818–828. doi: 10.1046/j.0022-0477.2001.00602.x CrossRefGoogle Scholar
  45. Miller RL, Hastings L, Fujii R (2000) Hydrologic treatments affect gaseous carbon soil loss from organic soils, Twitchell Island, California, October 1995–December 1997. US Geological Survey, water resources investigations report, Sacramento, CA, 00-4042Google Scholar
  46. Miller RL, Fram M, Fujii R, Wheeler G (2008) Subsidence reversal in a re-established wetland in the Sacramento-San Joaquin Delta, CA, USA. San Francisco Estuary and Water Science 6(3) article 1. Available from: http://repositories.cdlib.org/jmie/sfews/vol6/iss3/art1
  47. Mitsch WJ, Gosselink JG (1993) Wetlands, 2nd edn. Van Nostrand Reinold, New YorkGoogle Scholar
  48. Morris JT, Haskin B (1990) A 5-yr record of aerial primary production and stand characteristics of Spartina alterniflora. Ecology 71(6):2209–2217. doi: 10.2307/1938633 CrossRefGoogle Scholar
  49. Mount J, Twiss R (2005) Subsidence, sea level rise, and seismicity in the Sacramento-San Joaquin Delta. San Fran Estuary Watershed Sci 3(1). Article 5Google Scholar
  50. Murayama S, Bakar ZA (1996) Decomposition of tropical peat soils 1. Decomposition kinetics of organic matter of peat soils. Jpn Agric Res Q 30:145–151Google Scholar
  51. Neill C (1990) Nutrient limitation of hardstem bulrush (Scirpus acutus Muhl.) in a Manitoba interlake region marsh. Wetlands 10(1):69–76Google Scholar
  52. Pearsall WH, Gorham E (1956) Production ecology I. Standing crops of natural vegetation. Oikos 7(11):193–201CrossRefGoogle Scholar
  53. Penfound WT (1956) Primary production of vascular aquatic plants. Limnol Oceanogr 1(2):92–101Google Scholar
  54. Pratolongo P, Vicari R, Kandus P, Malvarez I (2005) A new method for evaluating net aboveground primary production (NAPP) of Scirpus gigantus (Kunth). Wetlands 25(1):228–232. doi: 10.1672/0277-5212(2005)025[0228:ANMFEN]2.0.CO;2 CrossRefGoogle Scholar
  55. Reddy KR (1981) Diel variations of certain physico-chemical parameters of water in selected aquatic systems. Hydrobiologia 85:201–207. doi: 10.1007/BF00017610 CrossRefGoogle Scholar
  56. Reed DJ (2002) Understanding tidal marsh sedimentation in the Sacramento-San Joaquin Delta, California. J Coast Res 36(special issue):605–611Google Scholar
  57. Rocha AV, Potts DL, Goulden ML (2008) Standing litter as a driver of interannual CO2 exchange variability in a freshwater marsh. J Geophys Res 113:G04020. doi: 10.1029/2008JG00713.2008 CrossRefGoogle Scholar
  58. Rodgers JH Jr, Mckevitt ME, Hammerlund DO, Dickson KL, Cairns J Jr (1983) Primary production and decomposition of submerged and emergent aquatic plants of two Appalacian rivers. In: Fontaine TDIII, Bartell SM (eds) Dynamics of lotic ecosystems. Ann Arbor Science, Ann ArborGoogle Scholar
  59. Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San DiegoGoogle Scholar
  60. Sharitz RR, Phillips SC (2006) Development of wetland plant communities. In: Batzer PB, Sharitz RR (eds) Ecology of freshwater and estuarine wetlands. University of California Press, BerkeleyGoogle Scholar
  61. Sharma P, Asaeda T, Fujino T (2008) Effect of water depth on the rhizome dynamics of T. angustifolia. Wetlands Ecol Manag 16:43–49. doi: 10.1007/s11273-007-9055-5 CrossRefGoogle Scholar
  62. Simpson RL, Whigham DF, Walker R (1978) Seasonal patterns of nutrient movement in a freshwater tidal marsh. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York, pp 3–20Google Scholar
  63. Smith SG (1987) Typha: its taxonomy and the ecological significance of hybrids. Arch Hydrobiol 27:29–138Google Scholar
  64. Smith LM, Kadlec JA (1985) Fire and herbivory in a Great Salt Lake marsh. Ecology 66(1):259–265. doi: 10.2307/1941326 CrossRefGoogle Scholar
  65. Squires MM, Lesack LFW (2003) The relation between sediment nutrient content and macrophyte biomass and community structure along a water transparency gradient among lakes of the Mackenkie Delta. Can J Fish Aquat Sci 60:333–343. doi: 10.1139/f03-027 CrossRefGoogle Scholar
  66. Squires L, van der Valk AG (1992) Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Can J Bot 70:1860–1867. doi: 10.1139/b92-230 CrossRefGoogle Scholar
  67. Szumigalski AR, Bayley SE (1996) Decomposition along a bog to rich fen gradient in central Alberta, Canada. Can J Bot 74:573–581Google Scholar
  68. Tanner CC (1994) Growth and nutrition of Schoenoplectus validus in agricultural wastewaters. Aquat Bot 47:131–153. doi: 10.1016/0304-3770(94)90010-8 CrossRefGoogle Scholar
  69. Taylor BR, Parkinson D, Parsons WFJ (1989) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70(1):97–104. doi: 10.2307/1938416 CrossRefGoogle Scholar
  70. Thursby GB, Chintala MM, Stetson D, Wigland C, Champlin DM (2002) A rapid, non-destructive method for estimating aboveground biomass of salt marsh grasses. Wetlands 22(3):626–630. doi: 10.1672/0277-5212(2002)022[0626:ARNDMF]2.0.CO;2 CrossRefGoogle Scholar
  71. van der Valk AG, Attiwill PM (1984) Decomposition of leaf and root litter of Avicennia marina at Westernport Bay, Victoria, Australia. Aquat Bot 18:205–221. doi: 10.1016/0304-3770(84)90062-7 CrossRefGoogle Scholar
  72. Waters I, Shay JM (1992) Effect of water depth on population parameters of a Typha glauca stand. Can J Bot 70:349–351. doi: 10.1139/b92-046 CrossRefGoogle Scholar
  73. Westlake DF (1963) Comparisons of plant productivity. Biol Rev Camb Philos Soc 38:385–425. doi: 10.1111/j.1469-185X.1963.tb00788.x CrossRefGoogle Scholar
  74. Whigham DF, Simpson RL (1978) The relationship between aboveground and belowground biomass of freshwater tidal macrophytes. Aquat Bot 5:355–364. doi: 10.1016/0304-3770(78)90076-1 CrossRefGoogle Scholar
  75. Whigham DF, McCormick J, Good RE, Simpson RL (1978) Biomass and primary production in freshwater tidal wetlands of the middle Atlantic coast. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York, pp 3–20Google Scholar
  76. Zedler JB (2003) Wetlands at your service: reducing impacts of agriculture at the watershed scale. Front Ecol Environ 1(2):65–72CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.US Geological SurveyCalifornia Water Sciences CenterSacramentoUSA

Personalised recommendations