Wetlands Ecology and Management

, Volume 14, Issue 3, pp 269–286 | Cite as

Accelerating the Restoration of Vegetation in a Southern California Salt Marsh



Re-establishing plant cover is essential for restoring ecosystem functions, but revegetation can be difficult in severe sites, such as salt marshes that experience hypersalinity and sedimentation. We tested three treatments (adding tidal creeks, planting seedlings in tight clusters, and rototilling kelp compost into the soil) in a site that was excavated to reinstate tidal flows and restore salt marsh. The magnitude of responses was the reverse of expectations, with tidal creeks having the least effect and kelp compost the most. On the marsh plain, kelp compost significantly increased soil organic matter (by 17% at 0–5 cm; p = 0.026 and 11.5% at 5–20 cm; p = 0.083), total Kjeldahl nitrogen (45% at 5–8 cm; p < 0.001) and inorganic nitrogen (35% at 5–8 cm; p < 0.006), and decreased bulk density (16% at 0–5 cm; p < 0.001 and 21% at 5–8 cm depth; p < 0.001) compared to control plots. Survivorship of kelp compost treated plantings increased, along with growth (> 50% increase in a growth index at 20 months after planting; p < 0.0001). In Spartina foliosa plots, kelp compost did not affect soil organic matter, but plants were taller (by ~11 cm; p = 0.003) and denser (47% more stems; p = 0.003). Planting seedlings 10-cm apart in tight clusters on the marsh plain increased survivorship by 18% (compared to 90-cm apart in loose clusters; p = 0.053), but not growth. Tidal creek networks increased survivorship of Batis maritima and Jaumea carnosa by ≥20% (p = 0.060 and 0.077, respectively). Kelp compost had a strong, positive influence on vegetation establishment by ameliorating some of the abiotic stress.


Cluster planting Halophyte establishment Halophyte growth Soil amendment Spartina foliosa Tidal creek Wetland 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. American Kelp Corporation 2003. http://organa.cc/KEL-FIBER%20232.htmPO Box 370178, San Diego, California, 92137, USA.Google Scholar
  2. Adam, P. 1990Salt Marsh EcologyCambridge University PressCambridge, UKGoogle Scholar
  3. APHA (American Public Health Association), AWWA (American Water Works Association), and Water Environment Federation 1995. Standard Methods for the Examination of Water and Wastewater.19th edn. Washington DC, USA.Google Scholar
  4. Bakker, J.P., Esseline, P., Dijkeme, K.S., Duin, W.E., Jong, D.J. 2002Restoration of salt marshes in the NetherlandsHydrobiologia4782951CrossRefGoogle Scholar
  5. Bertness, M.D., Hacker, S.D. 1994Physical stress and positive associations among marsh plantsAm. Nat.144363372CrossRefGoogle Scholar
  6. Bertness, M.D., Shumway, S.W. 1993Competition and facilitation in marsh plantsAm. Nat.142718724CrossRefPubMedGoogle Scholar
  7. Bledsoe, B.P., Shear, T.H. 2000Vegetation along hydrologic and edaphic gradients in a North Carolina coastal plain creek bottom and implications for restorationWetlands20126147Google Scholar
  8. Boeken, B., Shachak, M. 1994Desert plant communities in human-made patches – implications for managementEcol. Appl.4702716Google Scholar
  9. Boyer, K.E., Zedler, J.B. 1998Effects of nitrogen additions on the vertical structure of a constructed cordgrass marshEcol. Appl.8692705Google Scholar
  10. Bradley, P.M., Morris, J.T. 1992Effect of salinity on the critical nitrogen concentration of Spartina-alterniflora LoiselAquat. Bot.43149161CrossRefGoogle Scholar
  11. Brady N.C. and Weil R.R. 1996. The nature and properties of soils. 11th edition. Prentice Hall, Upper Saddle River, NJ.Google Scholar
  12. Burdick, D.M., Mendelssohn, I.A., McKee, K.W. 1989Live standing crop and metabolism of the marsh grass Spartina Patnes as related to edaphic factors in a brackishmixed marsh community in houisanaEstuaries12195204CrossRefGoogle Scholar
  13. Callaway, J.C. 2001

    Hydrology and substrate

    Zedler, J.B. eds. Handbook for Restoring Tidal WetlandsCRC PressBoca Raton, Florida, USA89112
    Google Scholar
  14. Callaway, J.C., Sullivan, G.S., Zedler, J.B. 2003Species richness and wetland functionEcol. Appl.1316261639Google Scholar
  15. Covin, J.D., Zedler, J.B. 1988Nitrogen effects on Spartina foliosa and Salicornia virginica in the salt marsh at Tijuana Estuary, CaliforniaWetlands85165CrossRefGoogle Scholar
  16. Crooks, S., Schutten, J., Sheern, G.D., Pye, K., Davy, A.J. 2002Drainage and Elevation as Factors in the Restoration of Salt Marsh in BritainRestor. Ecol.10591602CrossRefGoogle Scholar
  17. Craft, C., Reader, J., Sacco, J.N., Broome, S.W. 1999Twenty-five years of ecosystem development of constructed Spartina alterniflora (Loisel) marshesEcol. Appl.914051419Google Scholar
  18. Entrix, Pacific Estuarine Research Laboratory, and Philip Williams & Associates Ltd.1991Tijuana Estuary Tidal Restoration Program. Vol. I–III Draft Environmental Impact Report and Environmental Impact StatementCalifornia Coastal ConservancyOakland, CA, USAGoogle Scholar
  19. Eertman, R.H., Kornman, B.A., Stikvoort, E., Verbeek, H. 2002Restoration of the Sieperda Tidal Marsh in the Scheldt EstuaryNetherlands10438449Google Scholar
  20. Fogel, B.N., Crain, C.M., Bertness, M.D. 2004Community level engineering effects of Triglochlin maritima (seaside arrowgrass) in a salt marsh in northern New EnglandUSAJ. Ecol.92589597CrossRefGoogle Scholar
  21. Haltiner, J., Zedler, J.B., Boyer, K.E., Williams, G.D., Callaway, J.C. 1997Influence of physical processes on the design, functioning and evolution of restored tidal wetlandsWetlands Ecol. Manage.47391CrossRefGoogle Scholar
  22. Handa, I.T., Jefferies, R.L. 2000Assisted revegetation trials in degraded salt-marshesJ. Appl. Ecol.37944958CrossRefGoogle Scholar
  23. Keer, G., Zedler, J.B. 2002Salt marsh canopy architecture differs with species richness and species identityEcol. Appl.12456473Google Scholar
  24. Kolasa, J., Pickett, S. 1991Ecological Heterogeneity. Ecological StudiesSpringer-VerlagNew York, NY, USAGoogle Scholar
  25. Langis, R.M., Zalejko, M., Zedler, J.B. 1991Nitrogen assessments in a constructed and a natural salt marsh of San Diego Bay (California, USA)Ecol. Appl.14051Google Scholar
  26. Lindig-Cisneros, R., Zedler, J.B. 2002Halophyte recruitment in a salt marsh restoration siteEstuaries2511741183CrossRefGoogle Scholar
  27. MacMahon, J.A. 1997

    Ecological Restoration

    Meffe, G.K.Carrol, C.R. eds. Principles of Conservation BiologySinauer Associates, IncSunderland, Massachusetts, USA479511
    Google Scholar
  28. Mendelssohn, I., Kuhn, N.L. 2003Sediment subsidy: effects on soil-plant responses in a rapidly submerging coastal marshEcol. Eng.21115128CrossRefGoogle Scholar
  29. Mitsch, W.J., Wilson, R.F. 1996Improving the success of wetland creation and restoration with know-how, time and self-designEcol. Appl.67783Google Scholar
  30. Morzaria-Luna, H., Callaway, J.C., Sullivan, G., Zedler, J.B. 2004Topographic heterogeneity effects on community patterns in a Californian salt-marshJ. Veg. Sci.15523530Google Scholar
  31. NRC1996Wetland Characteristics and BoundariesNational Academy PressWashington, DC, USAGoogle Scholar
  32. O’Brien, E.O. 2003Starting from scratch: a three factor approach to accelerate vegetation development at a southern California salt marsh restoration siteUniversity of Wisconsin-Madison. Gaylord Nelson Institute for Environmental StudiesMadison, Wisconsin, USAMasters ThesisGoogle Scholar
  33. Palmer, M.A., Poff, N.L. 1997The influence of environmental heterogeneity on patterns and processes in streamsJ. N. Am. Benthol. Soc.16169173CrossRefGoogle Scholar
  34. Sheridan, P., McMahan, G., Hammerstrom, K., Pulich, W. 1998Factors affecting restoration of Halodule wrightii to Galveston bay, TexasRestor. Ecol.6144158CrossRefGoogle Scholar
  35. Sullivan, G., Noe, G.B. 2001

    Coastal wetland plant species of southern California

    Zedler, J.B. eds. Handbook for Restoring Tidal WetlandsCRC PressBoca Raton, Florida, USA369394
    Google Scholar
  36. Trnka, S., Zedler, J.B. 2000Site conditions, not parental phenotypedetermine the height of Spartina foliosa Estuaries24572582CrossRefGoogle Scholar
  37. Vivian-Smith, G. 1997Microtopographic heterogeneity and floristic diversity in experimental wetland communitiesJ. Ecol.857182Google Scholar
  38. Vivian-Smith, G. 2001

    Developing a framework for restoration

    Zedler, J.B. eds. Handbook for Restoring Tidal WetlandsCRC PressBoca Raton, Florida, USA3988
    Google Scholar
  39. Weinstein, M.P., Philipp, K.R., Goodwin, P. 2000

    Catastrophes, near-catastrophes and the bounds of expectations: Success criteria for macroscale marsh restoration

    Weinstein, M.P.Kreeger, D. eds. Concepts and Controversies in Tidal Marsh EcologyKluwer Academic PublishersDordrecht, The Netherlands777804
    Google Scholar
  40. Whisenant, S.G. 2002

    Terrestrial systems

    Perrow, M.R.Davy, A.J. eds. Handbook of Ecological Restoration, Vol. 1: Principles of RestorationCambridge University PressCambridge, UK83105
    Google Scholar
  41. Worm, B., Reusch, T.B.H. 2000Do nutrient availability and plant density limit seagrass colonization in the Baltic Sea?Mar. Ecol.-Prog. Ser.200159166Google Scholar
  42. Zedler, J.B., Callaway, J.C., Desmond, J.S., Vivian-Smith, G., Williams, G.D., Sullivan, G., Brewster, A.E., Bradshaw, B.K. 1999Californian salt-marsh vegetation: an improved model of spatial patternEcosystems21935CrossRefGoogle Scholar
  43. Zedler, J.B., Callaway, J.C., Sullivan, G. 2001Declining biodiversity: why species matter and how their functions might be restored in Californian tidal marshesBioscience5110051017Google Scholar
  44. Zedler, J.B. eds. 2001Handbook for Restoring Tidal WetlandsCRC PressBoca Raton, Florida, USAGoogle Scholar
  45. Zedler, J.B., Morzaria-Luna, H., Ward, K. 2003The challenge of restoring vegetation on tidal, hypersaline substratesPlant Soil253259273CrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.Wisconsin Wetlands AssociationMadisonUSA
  2. 2.Botany Department and ArboretumMadisonUSA

Personalised recommendations