Advertisement

Cr(VI) Removal from Aqueous Solution Using a Magnetite Snail Shell

  • Le Phuong Hoang
  • Thi Minh Phuong Nguyen
  • Huu Tap Van
  • Thi Kim Dung Hoang
  • Xuan Hoa Vu
  • Tien Vinh Nguyen
  • N. X. CaEmail author
Article
  • 22 Downloads

Abstract

In this study, magnetic snail shell (MSS) prepared by impregnating of iron oxide onto snail shell (SS) powder was used for removing Cr(VI) from aqueous solution. Among six different mass ratios of Fe/SS powder studied, the MSS25 produced at a ratio of 25% achieved the highest Cr(VI) adsorption capacity. Batch adsorption experiments were conducted to investigate the adsorption isotherm, kinetics, and mechanism of Cr(VI) onto MSS25. The results illustrated that adsorption of Cr(VI) onto MSS25 reached equilibrium after 150 min at pH 3. The adsorption kinetics could be well described by the pseudo-second order model (R2 = 0.986). The Langmuir model (R2 = 0.971) was the best-fitting model that described the adsorption isotherm of Cr(VI) onto MSS25. The maximum adsorption capacity was 46.08 mg Cr(VI) per gram of MSS25. Ion exchange, electrostatic attraction, and adsorption-coupled reduction were determined as the main adsorption mechanisms of Cr(VI) onto MSS25. The high percentages of CaCO3 and Fe3O4 found in the MSS25 structure made a significant contribution to the Cr(VI) adsorption process.

Keywords

Cr(V) removal Magnetic snail shell Adsorption Low-cost adsorbent 

Notes

Funding Information

The authors would like to acknowledge the financial support given by Thai Nguyen University of Technology (TNUT) and Thai Nguyen University under grant number DH2019-TN02-04.

References

  1. Akram, M., Bhatti, H. N., Iqbal, M., Noreen, S., & Sadaf, S. (2017). Biocomposite efficiency for Cr(VI) adsorption: Kinetic, equilibrium and thermodynamics studies. Journal of Environmental Chemical Engineering, 5(1), 400–411.  https://doi.org/10.1016/j.jece.2016.12.002.CrossRefGoogle Scholar
  2. Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., & Watanabe, M. (2015). Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. Journal of Environmental Management, 150, 103–110.  https://doi.org/10.1016/j.jenvman.2014.10.032.CrossRefGoogle Scholar
  3. An, Q., Li, X. Q., Nan, H. Y., Yu, Y., & Jiang, J. N. (2018). The potential adsorption mechanism of the biochars with different modification processes to Cr(VI). Environmental Science and Pollution Research, 25(31), 31346–31357.  https://doi.org/10.1007/s11356-018-3107-7.CrossRefGoogle Scholar
  4. Bai, R. S., & Abraham, T. E. (2001). Biosorption of Cr (VI) from aqueous solution by Rhizopus nigricans. Bioresource Technology, 79(1), 73–81.  https://doi.org/10.1016/S0960-8524(00)00107-3.CrossRefGoogle Scholar
  5. Bhaumik, M., Setshedi, K., & Maity, A. (2013). Chromium (VI) removal from water using fixed bed column of polypyrrole/Fe3O4 nanocomposite. Separation and Purification Technology.  https://doi.org/10.1016/j.seppur.2013.02.037.CrossRefGoogle Scholar
  6. Chen, Y., Wang, B., Xin, J., Sun, P., & Wu, D. (2018). Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera. Ecotoxicology and Environmental Safety, 164, 440–447.  https://doi.org/10.1016/j.ecoenv.2018.08.024.CrossRefGoogle Scholar
  7. Deveci, H., & Kar, Y. (2013). Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. Journal of Industrial and Engineering Chemistry, 19(1), 190–196.  https://doi.org/10.1016/j.jiec.2012.08.001.CrossRefGoogle Scholar
  8. Dönmez, G., & Aksu, Z. (2002). Removal of chromium(VI) from saline wastewaters by Dunaliella species. Process Biochemistry, 38(5), 751–762.  https://doi.org/10.1016/S0032-9592(02)00204-2.CrossRefGoogle Scholar
  9. Du, Y., Lian, F., & Zhu, L. (2011). Biosorption of divalent Pb, Cd and Zn on aragonite andcalcite mollusk shells. Environmental Pollution, 159(7), 1763–1768.  https://doi.org/10.1016/j.envpol.2011.04.017.CrossRefGoogle Scholar
  10. Ertugay, N., & Bayhan, Y. K. (2008). Biosorption of Cr (VI) from aqueous solutions by biomass of Agaricus bisporus. Journal of Hazardous Materials, 154(1–3), 432–439.  https://doi.org/10.1016/j.jhazmat.2007.10.070.CrossRefGoogle Scholar
  11. Gong, R., Ding, Y., Liu, H., Chen, Q., & Liu, Z. (2005). Lead biosorption and desorption by intact and pretreated spirulina maxima biomass. Chemosphere, 58(1), 125–130.  https://doi.org/10.1016/j.chemosphere.2004.08.055.CrossRefGoogle Scholar
  12. Han, Y., Cao, X., Ouyang, X., Sohi, S. P., & Chen, J. (2016). Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere, 145, 336–341.  https://doi.org/10.1016/j.chemosphere.2015.11.050.CrossRefGoogle Scholar
  13. Hao, Z., Wang, C., Yan, Z., Jiang, H., & Xu, H. (2018). Magnetic particles modification of coconut shell-derived activated carbon and biochar for effective removal of phenol from water. Chemosphere, 211, 962–969.  https://doi.org/10.1016/j.chemosphere.2018.08.038.CrossRefGoogle Scholar
  14. He, R., Peng, Z., Lyu, H., Huang, H., Nan, Q., & Tang, J. (2018). Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment, 612, 1177–1186.  https://doi.org/10.1016/j.scitotenv.2017.09.016.CrossRefGoogle Scholar
  15. Hossain, A., & Aditya, G. (2013). Cadmium biosorption potential of shell dust of the fresh water invasive snail Physa acuta. Journal of Environmental Chemical Engineering, 1(3), 574–580.  https://doi.org/10.1016/j.jece.2013.06.030.CrossRefGoogle Scholar
  16. Hossain, A., Bhattacharyya, S. R., & Aditya, G. (2015). Biosorption of cadmium from aqueous solution by shell dust of the freshwater snail Lymnaea luteola. Environmental Technology & Innovation, 4, 82–91.  https://doi.org/10.1016/j.eti.2015.05.001.CrossRefGoogle Scholar
  17. Hu, X., Xu, J., Wu, M., Xing, J., Bi, W., Wang, K., et al. (2017). Effects of biomass pre-pyrolysis and pyrolysis temperature on magnetic biochar properties. Journal of Analytical and Applied Pyrolysis, 127, 196–202.  https://doi.org/10.1016/j.jaap.2017.08.006.CrossRefGoogle Scholar
  18. Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., et al. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406–433.  https://doi.org/10.1080/10643389.2015.1096880.CrossRefGoogle Scholar
  19. Karimi, M., Shojaei, A., Nematollahzadeh, A., & Abdekhodaie, M. J. (2012). Column study of Cr (VI) adsorption onto modified silica–polyacrylamide microspheres composite. Chemical Engineering Journal, 210, 280–288.  https://doi.org/10.1016/j.cej.2012.08.046.CrossRefGoogle Scholar
  20. Khitous, M., Salem, Z., & Halliche, D. (2016). Effect of interlayer anions on chromium removal using Mg–Al layered double hydroxides: Kinetic, equilibrium and thermodynamic studies. Chinese Journal of Chemical Engineering, 24(4), 433–445.  https://doi.org/10.1016/j.cjche.2015.11.018.CrossRefGoogle Scholar
  21. Lu, J., Fu, F., Zhang, L., & Tang, B. (2018). Insight into efficient co-removal of Se(IV) and Cr(VI) by magnetic mesoporous carbon microspheres: Performance and mechanism. Chemical Engineering Journal, 346, 590–599.  https://doi.org/10.1016/j.cej.2018.04.077.CrossRefGoogle Scholar
  22. Mthombeni, N. H., Onyango, M. S., & Aoyi, O. (2015). Adsorption of hexavalent chromium onto magnetic natural zeolite-polymer composite. Journal of the Taiwan Institute of Chemical Engineers, 50, 242–251.  https://doi.org/10.1016/j.jtice.2014.12.037.CrossRefGoogle Scholar
  23. Mthombeni, N. H., Mbakop, S., Ray, S. C., Leswifi, T., Ochieng, A., & Onyango, M. S. (2018). Highly efficient removal of chromium (VI) through adsorption and reduction: A column dynamic study using magnetized natural zeolite-polypyrrole composite. Journal of Environmental Chemical Engineering, 6(4), 4008–4017.  https://doi.org/10.1016/j.jece.2018.05.038.CrossRefGoogle Scholar
  24. Nan, Z., Shi, Z., Yan, B., Guo, R., & Hou, W. (2008). A novel morphology of aragonite and an abnormal polymorph transformation from calcite to aragonite with PAM and CTAB as additives. Journal of Colloid and Interface Science, 317(1), 77–82.  https://doi.org/10.1016/j.jcis.2007.09.015.CrossRefGoogle Scholar
  25. Nguyen, L. H., Minh, T., Nguyen, P., Van, H. T., & Vu, X. H. (2019). Treatment of hexavalent chromium contaminated wastewater using activated carbon derived from coconut shell loaded by silver nanoparticles : Batch experiment. Water, Air & Soil Pollution, 230, 68.  https://doi.org/10.1007/s11270-019-4119-8.CrossRefGoogle Scholar
  26. Rai, M. K., Shahi, G., Meena, V., Meena, R., Chakraborty, S., Singh, R. S., & Rai, B. N. (2016). Removal of hexavalent chromium Cr (VI) using activated carbon prepared from mango kernel activated with H3PO4. Resource-Efficient Technologies, 2, S63–S70.  https://doi.org/10.1016/j.reffit.2016.11.011.CrossRefGoogle Scholar
  27. Saha, P. D., Dey, A., & Marik, P. (2012). Batch removal of chromium (VI) from aqueous solutions using wheat shell as adsorbent: Process optimization using response surface methodology. Desalination and Water Treatment, 39(1–3), 95–102.  https://doi.org/10.5004/dwt.2012.2905.CrossRefGoogle Scholar
  28. Shang, J., Pi, J., Zong, M., Wang, Y., Li, W., & Liao, Q. (2016). Chromium removal using magnetic biochar derived from herb-residue. Journal of the Taiwan Institute of Chemical Engineers, 68, 289–294.  https://doi.org/10.1016/j.jtice.2016.09.012.CrossRefGoogle Scholar
  29. Tizo, M. S., Blanco, L. A. V., Cagas, A. C. Q., Dela Cruz, B. R. B., Encoy, J. C., Gunting, J. V., et al. (2018). Efficiency of calcium carbonate from eggshells as an adsorbent for cadmium removal in aqueous solution. Sustainable Environment Research, 28(6), 326–332.  https://doi.org/10.1016/j.serj.2018.09.002.CrossRefGoogle Scholar
  30. Turan, P., Doǧan, M., & Alkan, M. (2007). Uptake of trivalent chromium ions from aqueous solutions using kaolinite. Journal of Hazardous Materials, 148(1–2), 56–63.  https://doi.org/10.1016/j.jhazmat.2007.02.007.CrossRefGoogle Scholar
  31. Van, H. T., Nguyen, L. H., Van Dang Nguyen, X. H. N., Nguyen, T. H., Nguyen, T. V., Saravanamuth Vigneswaran, J. R., & Tran, H. N. (2018). Characteristics and mechanisms of cadmium adsorption onto biogenic aragonite shells-derived biosorbent: Batch and column studies. Journal of Environmental Management, 241, 535–548 doi.org/10.1016/j.jenvman.2018.09.079.CrossRefGoogle Scholar
  32. Wang, X. S., Li, Z. Z., & Tao, S. R. (2009). Removal of chromium (VI) from aqueous solution using walnut hull. Journal of Environmental Management, 90(2), 721–729.  https://doi.org/10.1016/j.jenvman.2008.01.011.CrossRefGoogle Scholar
  33. Wang, S., Tang, Y., Li, K., Mo, Y., Li, H., & Gu, Z. (2014). Combined performance of biochar sorption and magnetic separation processes for treatment of chromium-contained electroplating wastewater. Bioresource Technology, 174, 67–73.  https://doi.org/10.1016/j.biortech.2014.10.007.CrossRefGoogle Scholar
  34. Xu, J., Yin, Y., Tan, Z., Wang, B., Guo, X., Li, X., & Liu, J. (2019). Enhanced removal of Cr(VI) by biochar with Fe as electron shuttles. Journal of Environmental Sciences, 78, 109–117.  https://doi.org/10.1016/j.jes.2018.07.009.CrossRefGoogle Scholar
  35. Yang, Y., Chen, N., Feng, C., Li, M., & Gao, Y. (2018). Chromium removal using a magnetic corncob biochar/polypyrrole composite by adsorption combined with reduction: Reaction pathway and contribution degree. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 556, 201–209.  https://doi.org/10.1016/j.colsurfa.2018.08.035.CrossRefGoogle Scholar
  36. Yuan, P., Fan, M., Yang, D., He, H., Liu, D., Yuan, A., et al. (2009). Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions. Journal of Hazardous Materials, 166(2–3), 821–829.  https://doi.org/10.1016/j.jhazmat.2008.11.083.CrossRefGoogle Scholar
  37. Zhang, X., Zhang, L., & Li, A. (2018). Eucalyptus sawdust derived biochar generated by combining the hydrothermal carbonization and low concentration KOH modification for hexavalent chromium removal. Journal of Environmental Management, 206, 989–998.  https://doi.org/10.1016/j.jenvman.2017.11.079.CrossRefGoogle Scholar
  38. Zhao, B., Zhang, J. E., Yan, W., Kang, X., Cheng, C., & Ouyang, Y. (2016). Removal of cadmium from aqueous solution using waste shells of golden apple snail. Desalination and Water Treatment, 57(50), 23987–24003.  https://doi.org/10.1080/19443994.2016.1140078.CrossRefGoogle Scholar
  39. Zhou, L., Liu, Y., Liu, S., Yin, Y., Zeng, G., Tan, X., et al. (2016). Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures. Bioresource Technology, 218, 351–359.  https://doi.org/10.1016/j.biortech.2016.06.102.CrossRefGoogle Scholar
  40. Zhou, X., Liu, Y., Zhou, J., Guo, J., Ren, J., & Zhou, F. (2018). Efficient removal of lead from aqueous solution by urea-functionalized magnetic biochar: Preparation, characterization and mechanism study. Journal of the Taiwan Institute of Chemical Engineers, 91, 457–467.  https://doi.org/10.1016/j.jtice.2018.04.018.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Civil and Environmental EngineeringThai Nguyen University of Technology (TNUT)Thai NguyenVietnam
  2. 2.Faculty of Environment and Chemical EngineeringDuy Tan University (DTU)Da NangVietnam
  3. 3.Faculty of Natural Resources and EnvironmentTNU - University of Sciences (TNUS)Thai NguyenVietnam
  4. 4.Institute of Research and DevelopmentDuy Tan UniversityDa NangVietnam
  5. 5.Faculty of Engineering and ITUniversity of Technology Sydney (UTS)SydneyAustralia
  6. 6.Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  7. 7.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations