Advertisement

Sorbent Materials Characterization Based on Mechanical or Thermal Pretreated Montmorillonite Modified by Surfactant Loading for Improved Chromium Retention

  • César Fernández Morantes
  • Florencia Yarza
  • María L. Montes
  • Roberto C. Mercader
  • Gustavo Curutchet
  • Rosa M. Torres SánchezEmail author
Article
  • 34 Downloads

Abstract

To improve hexavalent chromium (Cr(VI)) retention of montmorillonite (Mt) at pH 3, Mt sample was subjected to different treatments: thermal ones at 600 °C or 950 °C, 2 h, or mechanical grinding for 300 s. Then, the obtained products were loaded with different octadecyl trimethyl ammonium loading and 50% and 100% of Mt cation exchange capacity (CEC). The samples were characterized by several techniques at each stage. Differential thermogravimetric analysis (DTGA) performed on the products allowed determining the actual surfactant amount related to the internal or external surface by cation exchange and Van der Waals (VdW) mechanisms, respectively, taking into account the CEC of the thermal or mechanical pretreated Mt base sample used. X-ray diffraction (XRD) analyses revealed that the surfactant loading allowed the reversal of the collapsed interlayer after both treatments. The samples subjected to the thermal treatment at 600 °C and the raw Mt samples exhibit higher positive zeta potential values than the mechanical pretreated Mt ones with 100% of the CEC surfactant loaded at pH 3. This was directly related to the external surface covered by the surfactant. The agreement between the results of the surfactant coverage on the external surface and Cr(VI) removal at pH 3 indicates that the electrostatic mechanism is the main driving force for the sorption of Cr(VI). These synthesized sorbents achieve similar Cr(VI) retention using less than half the surfactant amount of already published studies.

Keywords

Montmorillonite Thermal and mechanical treatments Structure modification Chromium retention 

Notes

Funding Information

This study received financial support from the Argentinian Ministry of Science, Technology and Productive Innovation (MINCyT) and the National Agency for Scientific and Technological Promotion (ANPCyT), PICT-2014-0585. M.L. Montes, R.C. Mercader, G. Curutchetm and R.M. Torres Sanchez are members of the National Council for Scientific and Technological Research (CONICET). C. Fernández Morantes and F. Yarza received support from the CONICET fellowship.

Supplementary material

11270_2020_4403_MOESM1_ESM.docx (680 kb)
ESM 1 (DOCX 680 kb)
11270_2020_4403_Fig9_ESM.png (20 kb)
ESM 2

(PNG 19 kb)

11270_2020_4403_MOESM2_ESM.eps (61 kb)
High Resolution (EPS 60 kb)
11270_2020_4403_Fig10_ESM.png (28 kb)
ESM 3

(PNG 27 kb)

11270_2020_4403_MOESM3_ESM.eps (46 kb)
High Resolution (EPS 46 kb)
11270_2020_4403_Fig11_ESM.png (26 kb)
ESM 4

(PNG 26 kb)

11270_2020_4403_MOESM4_ESM.eps (176 kb)
High Resolution (EPS 176 kb)
11270_2020_4403_MOESM5_ESM.jpg (1.1 mb)
ESM 5 (JPG 1124 kb)
11270_2020_4403_Fig12_ESM.png (161 kb)
ESM 6

(PNG 160 kb)

11270_2020_4403_MOESM6_ESM.tif (164 kb)
High Resolution (TIF 164 kb)

References

  1. Bajda, T., & Kłapyta, Z. (2013). Adsorption of chromate from aqueous solutions by HDTMA-modified clinoptilolite, glauconite and montmorillonite. Applied Clay Science, 86, 169–173.  https://doi.org/10.1016/j.clay.2013.10.005.CrossRefGoogle Scholar
  2. Bianchi, A. E., Fernández, M., Pantanetti, M., Viña, R., Torriani, I., Sánchez, R. M. T., et al. (2013). ODTMA+ and HDTMA+ organo-montmorillonites characterization: new insight by WAXS, SAXS and surface charge. Applied Clay Science, 83-84, 280–285.  https://doi.org/10.1016/j.clay.2013.08.032.CrossRefGoogle Scholar
  3. Christidis, G. E., Makri, P., & Perdikatsis, V. (2004). Influence of grinding on the structure and colour properties of talc, bentonite and calcite white fillers. [Article]. Clay Minerals, 39(2), 163–175.  https://doi.org/10.1180/0009855043920128.CrossRefGoogle Scholar
  4. Clescerl, L. S., Greenberg, A. E., & Eaton, A. D. (1998). APHA standard methods for the examination of water and wastewater. Washington DC: American Public Health Association.Google Scholar
  5. Costa, T. C. D. C., Melo, J. D. D., & Paskocimas, C. A. (2013). Thermal and chemical treatments of montmorillonite clay. [Article]. Ceramics International, 39(5), 5063–5067.  https://doi.org/10.1016/j.ceramint.2012.11.105.CrossRefGoogle Scholar
  6. de Paiva, L. B., Morales, A. R., & Valenzuela Díaz, F. R. (2008). Organoclays: properties, preparation and applications. [review]. Applied Clay Science, 42(1–2), 8–24.  https://doi.org/10.1016/j.clay.2008.02.006.CrossRefGoogle Scholar
  7. Dellisanti, F., & Valdré, G. (2005). Study of structural properties of ion treated and mechanically deformed commercial bentonite. [Article]. Applied Clay Science, 28(1-4 SPEC. ISS), 233–244.  https://doi.org/10.1016/j.clay.2003.12.036.CrossRefGoogle Scholar
  8. Dimos, V., Haralambous, K., & Malamis, S. (2012). A review on the recent studies for chromium species adsorption on raw and modified natural minerals. Critical Reviews in Environmental Science and Technology, 42(19), 1977–2016.  https://doi.org/10.4236/ajac.2013.47A002.CrossRefGoogle Scholar
  9. Djukić, A., Jovanović, U., Tuvić, T., Andrić, V., Grbović Novaković, J., Ivanović, N., et al. (2013). The potential of ball-milled Serbian natural clay for removal of heavy metal contaminants from wastewaters: simultaneous sorption of Ni, Cr, Cd and Pb ions. [Article]. Ceramics International, 39(6), 7173–7178.  https://doi.org/10.1016/j.ceramint.2013.02.061.CrossRefGoogle Scholar
  10. Dultz, S., An, J.-H., & Riebe, B. (2012). Organic cation exchanged montmorillonite and vermiculite as adsorbents for Cr(VI): Effect of layer charge on adsorption properties. Applied Clay Science, 67–68, 125–133.  https://doi.org/10.1016/j.clay.2012.05.004.CrossRefGoogle Scholar
  11. Emmerich, K., Madsen, F. T., & Kahr, G. (1999). Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites. [Article]. Clays and Clay Minerals, 47(5), 591–604.  https://doi.org/10.1346/CCMN.1999.0470506.CrossRefGoogle Scholar
  12. Emmerich, K., Steudel, A., & Merz, D. (2017). Dehydroxylation of dioctahedral smectites in water vapor atmosphere. [Article]. Applied Clay Science, 137, 1–5.  https://doi.org/10.1016/j.clay.2016.12.003.CrossRefGoogle Scholar
  13. España, V. A. A., Sarkar, B., Biswas, B., Rusmin, R., & Naidu, R. (2019). Environmental applications of thermally modified and acid activated clay minerals: current status of the art. [article]. Environmental Technology and Innovation, 13, 383–397.  https://doi.org/10.1016/j.eti.2016.11.005.CrossRefGoogle Scholar
  14. Fernández, M., Alba, M. D., & Torres Sánchez, R. M. (2013). Effects of thermal and mechanical treatments on montmorillonite homoionized with mono- and polyvalent cations: insight into the surface and structural changes. [article]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 423, 1–10.  https://doi.org/10.1016/j.colsurfa.2013.01.040.CrossRefGoogle Scholar
  15. Gamba, M., Flores, F. M., Madejová, J., & Sánchez, R. M. T. (2015). Comparison of imazalil removal onto montmorillonite and nanomontmorillonite and adsorption surface sites involved: An approach for agricultural wastewater treatment. [Article]. Industrial and Engineering Chemistry Research, 54(5), 1529–1538.  https://doi.org/10.1021/ie5035804.CrossRefGoogle Scholar
  16. Hedley, C. B., Yuan, G., & Theng, B. K. G. (2007). Thermal analysis of montmorillonites modified with quaternary phosphonium and ammonium surfactants. [article]. Applied Clay Science, 35(3–4), 180–188.  https://doi.org/10.1016/j.clay.2006.09.005.CrossRefGoogle Scholar
  17. Hrachová, J., Komadel, P., & Fajnor, V. Š. (2007). The effect of mechanical treatment on the structure of montmorillonite. Materials Letters, 61(16), 3361–3365.  https://doi.org/10.1016/j.matlet.2006.11.063.CrossRefGoogle Scholar
  18. Huang, P., Kazlauciunas, A., Menzel, R., & Lin, L. (2017). Determining the mechanism and efficiency of industrial dye adsorption through facile structural control of organo-montmorillonite adsorbents. ACS Applied Materials & Interfaces, 9(31), 26383–26391.  https://doi.org/10.1021/acsami.7b08406.CrossRefGoogle Scholar
  19. Jayrajsinh, S., Shankar, G., Agrawal, Y. K., & Bakre, L. (2017). Montmorillonite nanoclay as a multifaceted drug-delivery carrier: a review. [review]. Journal of Drug Delivery Science and Technology, 39, 200–209.  https://doi.org/10.1016/j.jddst.2017.03.023.CrossRefGoogle Scholar
  20. Johnston, J. H., & Cardile, C. M. (1987). Iron substitution in montmorillonite, illite, and glauconite by 57Fe Mossbauer spectroscopy. [article]. Clays & Clay Minerals, 35(3), 170–176.  https://doi.org/10.1346/CCMN.1987.0350302.CrossRefGoogle Scholar
  21. Júnior, J. A. A., & Baldo, J. B. (2014). The behavior of zeta potential of silica suspensions. New Journal of Glass and Ceramics, 4(02), 29.  https://doi.org/10.4236/njgc.2014.42004.CrossRefGoogle Scholar
  22. Lagarec, K., & Rancourt, D. G. (1998). Recoil-Mössbauer spectral analysis software for sWindows. Ottawa: University Ottawa.Google Scholar
  23. Madejová, J., Pálková, H., & Jankovič, Ľ. (2012). Degradation of surfactant-modified montmorillonites in HCl. [article]. Materials Chemistry and Physics, 134(2–3), 768–776.  https://doi.org/10.1016/j.matchemphys.2012.03.067.CrossRefGoogle Scholar
  24. Magnoli, A. P., Tallone, L., Rosa, C. A. R., Dalcero, A. M., Chiacchiera, S. M., & Torres Sanchez, R. M. (2008). Commercial bentonites as detoxifier of broiler feed contaminated with aflatoxin. [article]. Applied Clay Science, 40(1–4), 63–71.  https://doi.org/10.1016/j.clay.2007.07.007.CrossRefGoogle Scholar
  25. Martignago, F., Andreozzi, G., & Negro, A. D. (2006). Thermodynamics and kinetics of cation ordering in natural and synthetic Mg (Al, Fe3+) 2O4 spinels from in situ high-temperature X-ray diffraction. American Mineralogist, 91(2–3), 306–312.  https://doi.org/10.2138/am.2006.1880.CrossRefGoogle Scholar
  26. Missana, T., & Adell, A. (2000). On the applicability of DLVO theory to the prediction of clay colloids stability. [article]. Journal of Colloid and Interface Science, 230(1), 150–156.  https://doi.org/10.1006/jcis.2000.7003.CrossRefGoogle Scholar
  27. Murad, E., & Cashion, J. (2004). Mössbauer spectroscopy of environmental materials and their industrial utilization (1st ed.). Norwell, Massachusetts: Kluwer Academic Publishers.CrossRefGoogle Scholar
  28. Önal, M. (2007). Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments. [article]. Applied Clay Science, 37(1–2), 74–80.  https://doi.org/10.1016/j.clay.2006.12.004.CrossRefGoogle Scholar
  29. Orta, M. D. M., Flores, F. M., Morantes, C. F., Curutchet, G., & Torres Sánchez, R. M. (2019). Interrelations of structure, electric surface charge, and hydrophobicity of organo-mica and –montmorillonite, tailored with quaternary or primary amine cations. Preliminary study of pyrimethanil adsorption. [article]. Materials Chemistry and Physics, 223, 325–335.  https://doi.org/10.1016/j.matchemphys.2018.10.059.CrossRefGoogle Scholar
  30. Patel, H. A., Somani, R. S., Bajaj, H. C., & Jasra, R. V. (2006). Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. [article]. Bulletin of Materials Science, 29(2), 133–145.  https://doi.org/10.1007/BF02704606.CrossRefGoogle Scholar
  31. Pecini, E. M., & Avena, M. J. (2013). Measuring the isoelectric point of the edges of clay mineral particles: the case of montmorillonite. [article]. Langmuir, 29(48), 14926–14934.  https://doi.org/10.1021/la403384g.CrossRefGoogle Scholar
  32. Pérez-Rodríguez, J. (2003). Transformation of clay minerals on grinding: A review. In J. Pérez-Rodríguez (Ed.), Applied study of cultural heritage and clays (pp. 425–444). Madrid: Servicio Publicaciones del CSIC.Google Scholar
  33. Praus, P., Turicová, M., Študentová, S., & Ritz, M. (2006). Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. Journal of Colloid and Interface Science, 304(1), 29–36.CrossRefGoogle Scholar
  34. Qurie, M., Khamis, M., Manassra, A., Ayyad, I., Nir, S., Scrano, L., et al. (2013). Removal of Cr (VI) from aqueous environments using micelle-clay adsorption. The Scientific World Journal, 2013.  https://doi.org/10.1155/2013/942703.CrossRefGoogle Scholar
  35. Rasband, W. (1997). ImageJ, US National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij (Vol. 2012).
  36. Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and interfacial phenomena (4th ed.). New Jersey: John Wiley & Sons.CrossRefGoogle Scholar
  37. Sarkar, B., Naidu, R., & Megharaj, M. (2013). Simultaneous adsorption of tri- and hexavalent chromium by organoclay mixtures topical collection on remediation of site contamination. [article]. Water, Air, and Soil Pollution, 224(12).  https://doi.org/10.1007/s11270-013-1704-0.
  38. Savas, L. A., & Hancer, M. (2015). Montmorillonite reinforced polymer nanocomposite antibacterial film. Applied Clay Science, 108, 40–44.CrossRefGoogle Scholar
  39. Schampera, B., Tunega, D., Šolc, R., Woche, S. K., Mikutta, R., Wirth, R., et al. (2016). External surface structure of organoclays analyzed by transmission electron microscopy and X-ray photoelectron spectroscopy in combination with molecular dynamics simulations. Journal of Colloid and Interface Science, 478, 188–200.  https://doi.org/10.1016/j.jcis.2016.06.008.CrossRefGoogle Scholar
  40. Schoonheydt, R. A., Johnston, C. T., & Bergaya, F. (2018). Clay minerals and their surfaces. Developments in Clay Science, 9, 1–21.CrossRefGoogle Scholar
  41. Stalder, A. F., Melchior, T., Müller, M., Sage, D., Blu, T., & Unser, M. (2010). Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364(1), 72–81.  https://doi.org/10.1016/j.colsurfa.2010.04.040.CrossRefGoogle Scholar
  42. Tarasevich, Y. I., & Ovcharenko, F. (1975). Adsorption on clay minerals. Kiev: Naukova Dumka.Google Scholar
  43. Thanos, A. G., Katsou, E., Malamis, S., Psarras, K., Pavlatou, E. A., & Haralambous, K. J. (2012). Evaluation of modified mineral performance for chromate sorption from aqueous solutions. [article]. Chemical Engineering Journal, 211-212, 77–88.  https://doi.org/10.1016/j.cej.2012.08.086.CrossRefGoogle Scholar
  44. Thomas, F., Michot, L. J., Vantelon, D., Montargès, E., Prélot, B., Cruchaudet, M., et al. (1999). Layer charge and electrophoretic mobility of smectites. [conference Paper]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 159(2–3), 351–358.  https://doi.org/10.1016/S0927-7757(99)00291-5.CrossRefGoogle Scholar
  45. Torres Sánchez, R. M. (1997). Mechanochemical effects on physicochemical parameters of homoionic smectite. [article]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 127(1–3), 135–140.  https://doi.org/10.1016/S0927-7757(97)00105-2.CrossRefGoogle Scholar
  46. Torres Sánchez, R. M., & Falasca, S. (1997). Specific surface area and surface charges of some Argentinian soils. [article]. Journal of Plant Nutrition and Soil Science, 160(2), 223–226.  https://doi.org/10.1002/jpln.19971600216.CrossRefGoogle Scholar
  47. Torres Sánchez, R. M., Genet, M. J., Gaigneaux, E. M., dos Santos Afonso, M., & Yunes, S. (2011). Benzimidazole adsorption on the external and interlayer surfaces of raw and treated montmorillonite. Applied Clay Science, 53(3), 366–373.  https://doi.org/10.1016/j.clay.2010.06.026.CrossRefGoogle Scholar
  48. Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462.  https://doi.org/10.1016/j.cej.2016.09.029.CrossRefGoogle Scholar
  49. Wang, S. L., Chen, C. C., Tzou, Y. M., Hsu, C. L., Chen, J. H., & Lin, C. F. (2009). A mechanism study of light-induced Cr(VI) reduction in an acidic solution. [article]. Journal of Hazardous Materials, 164(1), 223–228.  https://doi.org/10.1016/j.jhazmat.2008.07.145.CrossRefGoogle Scholar
  50. Wang, G., Hua, Y., Su, X., Komarneni, S., Ma, S., & Wang, Y. (2016). Cr(VI) adsorption by montmorillonite nanocomposites. [article]. Applied Clay Science, 124-125, 111–118.  https://doi.org/10.1016/j.clay.2016.02.008.CrossRefGoogle Scholar
  51. Xu, C. H., Zhu, L. J., Wang, X. H., Lin, S., & Chen, Y. M. (2014). Fast and highly efficient removal of chromate from aqueous solution using nanoscale zero-valent iron/activated carbon (NZVI/AC). [article]. Water, Air, and Soil Pollution, 225(2).  https://doi.org/10.1007/s11270-013-1845-1.
  52. Yamagata, S., Hamba, Y., Akasaka, T., Ushijima, N., Uo, M., Iida, J., et al. (2012). The effect of enhancing the hydrophobicity of OMMT on the characteristics of PMMA/OMMT nanocomposites. Applied Surface Science, 262, 56–59.  https://doi.org/10.1016/j.apsusc.2012.01.081.CrossRefGoogle Scholar
  53. Yariv, S. (2001). IR spectroscopy and thermo-IR spectroscopy in the study of the fine structure of organo-clay complexes. In S. Yariv & H. Cross(Eds.)Organo-clay complexes and interactions (pp. 357–474): CRC Press.Google Scholar
  54. Zhang, Y., Zhao, Y., Zhu, Y., Wu, H., Wang, H., & Lu, W. (2012). Adsorption of mixed cationic-nonionic surfactant and its effect on bentonite structure. [article]. Journal of Environmental Sciences (China), 24(8), 1525–1532.  https://doi.org/10.1016/S1001-0742(11)60950-9.CrossRefGoogle Scholar
  55. Zhao, Q., Choo, H., Bhatt, A., Burns, S. E., & Bate, B. (2017). Review of the fundamental geochemical and physical behaviors of organoclays in barrier applications. [article]. Applied Clay Science, 142, 2–20.  https://doi.org/10.1016/j.clay.2016.11.024.CrossRefGoogle Scholar
  56. Zinicovscaia, I., Mitina, T., Lupascu, T., Duca, G., Frontasyeva, M. V., & Culicov, O. A. (2014). Study of chromium adsorption onto activated carbon. [article]. Water, Air, and Soil Pollution, 225(3).  https://doi.org/10.1007/s11270-014-1889-x.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • César Fernández Morantes
    • 1
    • 2
  • Florencia Yarza
    • 1
  • María L. Montes
    • 3
  • Roberto C. Mercader
    • 3
  • Gustavo Curutchet
    • 2
  • Rosa M. Torres Sánchez
    • 1
    Email author
  1. 1.CETMIC-CCT-La Plata – CICLa PlataArgentina
  2. 2.Lab. 3iAUniversidad Nacional de San MartínSan MartínArgentina
  3. 3.Departamento de Física, Facultad de Ciencias ExactasIFLP, Instituto de Física La Plata - CONICET CCT-La Plata, UNLPLa PlataArgentina

Personalised recommendations