Advertisement

Naproxen Sorption by Non-viable Rhizopus oryzae Biomass

  • B. Melgoza
  • HH. León-Santiesteban
  • R. López-Medina
  • A. TomasiniEmail author
Article

Abstract

Naproxen is an organic micropollutant widely distributed in municipal wastewaters and water bodies, it is not eliminated by wastewater treatment plants, and it accumulates in soil. In this research, the capability of the non-viable Rhizopus oryzae biomass (wet and dry) to sorb naproxen at environmentally relevant concentrations was assessed in batch experiments. Naproxen sorption was carried out as a function of pH and modeled by kinetic and equilibrium equations. Naproxen sorption increased with increasing pH values using wet biomass, but it also increased at acidic pH values with dried biomass. Dried biomass was more efficient and faster in removing naproxen and the maximum sorption was 1027.45 μg naproxen per gram of dried biomass at pH 4.7. Wet biomass sorption capacity was low and slow, and the equilibrium was achieved at 7 days, whereas with dried biomass at 26 h. Freundlich isotherm describes naproxen sorption by dried biomass.

Keywords

Biosorbent Freundlich isotherm Naproxen Pseudo-first kinetic model Raman spectra Rhizopus oryzae 

Notes

Funding Information

This research was financially supported by CONACYT grant no. 248132, México. Beatriz Melgoza thanks CONACYT for the scholarship (no. 234626).

References

  1. Aßmann, M., Stöbener, A., Mügge, C., Gaßmeyer, S. K., Hilterhaus, L., Kourist, R., et al. (2017). Reaction engineering of biocatalytic (S)-naproxen synthesis integrating in-line process monitoring by Raman spectroscopy. [ https://doi.org/10.1039/C7RE00043J]. Reaction Chemistry & Engineering, 2(4), 531–540, doi: https://doi.org/10.1039/c7re00043j.
  2. Bai, R. S., & Abraham, T. E. (2002). Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Research, 36(5), 1224–1236.  https://doi.org/10.1016/S0043-1354(01)00330-X.CrossRefGoogle Scholar
  3. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373–380, doi: https://doi.org/10.1021/ja01145a126.CrossRefGoogle Scholar
  4. Bosso, L., Lacatena, F., Cristinzio, G., Cea, M., Diez, M. C., & Rubilar, O. (2015). Biosorption of pentachlorophenol by Anthracophyllum discolor in the form of live fungal pellets. New Biotechnology, 32(1), 21–25.  https://doi.org/10.1016/j.nbt.2014.08.001.CrossRefGoogle Scholar
  5. Broekhoff, J. C. P., & de Boer, J. H. (1968). Studies on pore systems in catalysts: XIII. Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores B. Applications. Journal of Catalysis, 10(4), 377–390, doi: https://doi.org/10.1016/0021-9517(68)90153-X.CrossRefGoogle Scholar
  6. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60(2), 309–319.  https://doi.org/10.1021/ja01269a023.CrossRefGoogle Scholar
  7. Calderón, A. M., Meraz, M., & Tomasini, A. (2019). Pharmaceuticals present in urban and hospital wastewaters in Mexico City. Journal of Water Chemistry and Technology. In press.Google Scholar
  8. Chatterjee, S., Das, S. K., Chakravarty, R., Chakrabarti, A., Ghosh, S., & Guha, A. K. (2010). Interaction of malathion, an organophosphorus pesticide with Rhizopus oryzae biomass. Journal of Hazardous Materials, 174(1), 47–53.  https://doi.org/10.1016/j.jhazmat.2009.09.014.CrossRefGoogle Scholar
  9. Chefetz, B., Mualem, T., & Ben-Ari, J. (2008). Sorption and mobility of pharmaceutical compounds in soil irrigated with reclaimed wastewater. Chemosphere, 73(8), 1335–1343.  https://doi.org/10.1016/j.chemosphere.2008.06.070.CrossRefGoogle Scholar
  10. Chemicalize-software. Chemicalize was used for predition of naproxen properties, December 2018, https://chemicalize.com/ developed by ChemAxon (http://www.chemaxon.com).
  11. Cheol Min, L., Eun-Min, C., Erdene-Ganbold, O., Uuriintuya, D., & Sung Ik, Y. (2013). Chemotaxonomic Raman spectroscopy investigation of Ascomycetes and Zygomycetes. Bulletin of the Korean Chemical Society, 34(4), 1240–1242.  https://doi.org/10.5012/bkcs.2013.34.4.1240.CrossRefGoogle Scholar
  12. Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., & Yu, G. (2015). Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere, 119, 1033–1039.  https://doi.org/10.1016/j.chemosphere.2014.08.056.CrossRefGoogle Scholar
  13. De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review. Sustainable Materials and Technologies, 9, 10–40.  https://doi.org/10.1016/j.susmat.2016.06.002.CrossRefGoogle Scholar
  14. Ebele, A. J., Abou-Elwafa Abdallah, M., & Harrad, S. (2017). Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerging Contaminants, 3(1), 1–16.  https://doi.org/10.1016/j.emcon.2016.12.004.CrossRefGoogle Scholar
  15. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.  https://doi.org/10.1016/j.cej.2009.09.013.CrossRefGoogle Scholar
  16. Freundlich, H. (1906). Concerning adsorption in solutions. Zeitschrift Für Physikalische Chemie--Stochiometrie Und Verwandtschaftslehre, 57(4), 385–470.Google Scholar
  17. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.  https://doi.org/10.1016/s0032-9592(98)00112-5.CrossRefGoogle Scholar
  18. Idowu, S. O., Adeyemo, M. A., & Ogbonna, U. I. (2009). Engineering and validation of a novel lipid thin film for biomembrane modeling in lipophilicity determination of drugs and xenobiotics. [journal article]. Journal of Biological Engineering, 3(1), 14, doi: https://doi.org/10.1186/1754-1611-3-14.CrossRefGoogle Scholar
  19. İlbay, Z., Şahin, S., Kerkez, Ö., & Bayazit, Ş. S. (2015). Isolation of naproxen from wastewater using carbon-based magnetic adsorbents. International journal of Environmental Science and Technology, 12(11), 3541–3550.  https://doi.org/10.1007/s13762-015-0775-4.CrossRefGoogle Scholar
  20. Khazri, H., Ghorbel-Abid, I., Kalfat, R., & Trabelsi-Ayadi, M. (2017). Removal of ibuprofen, naproxen and carbamazepine in aqueous solution onto natural clay: equilibrium, kinetics, and thermodynamic study. Applied Water Science, 7(6), 3031–3040.  https://doi.org/10.1007/s13201-016-0414-3.CrossRefGoogle Scholar
  21. Kim, M., Chung, H., Woo, Y., & Kemper, M. (2006). New reliable Raman collection system using the wide area illumination (WAI) scheme combined with the synchronous intensity correction standard for the analysis of pharmaceutical tablets. Analytica Chimica Acta, 579(2), 209–216.  https://doi.org/10.1016/j.aca.2006.07.036.CrossRefGoogle Scholar
  22. Kumar, N. S., & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chemical Engineering Journal, 168(2), 562–571.  https://doi.org/10.1016/j.cej.2011.01.023.CrossRefGoogle Scholar
  23. Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe (Vol. 24, Vol. 4): Kungliga Svenska Vetenskapsakademiens, Handlingar.Google Scholar
  24. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I Solids. Journal of the American Chemical Society, 38, 2221–2295.  https://doi.org/10.1021/ja02268a002.CrossRefGoogle Scholar
  25. León-Santiestebán, H., Meraz, M., Wrobel, K., & Tomasini, A. (2011). Pentachlorophenol sorption in nylon fiber and removal by immobilized Rhizopus oryzae ENHE. Journal of Hazardous Materials, 190(1), 707–712.  https://doi.org/10.1016/j.jhazmat.2011.03.101.CrossRefGoogle Scholar
  26. León-Santiesteban, H. H., Wrobel, K., García, L. A., Revah, S., & Tomasini, A. (2014). Pentachlorophenol sorption by Rhizopus oryzae ENHE: pH and temperature effects. Water, Air, & Soil Pollution, 225(5), 1947.  https://doi.org/10.1007/s11270-014-1947-4.CrossRefGoogle Scholar
  27. Li, X., de Toledo, R. A., Wang, S., & Shim, H. (2015). Removal of carbamazepine and naproxen by immobilized Phanerochaete chrysosporium under non-sterile condition. New Biotechnology, 32(2), 282–289.  https://doi.org/10.1016/j.nbt.2015.01.003.CrossRefGoogle Scholar
  28. Li, Q., Wang, P., Chen, L., Gao, H., & Wu, L. (2016). Acute toxicity and histopathological effects of naproxen in zebrafish (Danio rerio) early life stages. Environmental Science and Pollution Research, 23(18), 18832–18841.  https://doi.org/10.1007/s11356-016-7092-4.CrossRefGoogle Scholar
  29. Liu, X., Testa, B., & Fahr, A. (2011). Lipophilicity and its relationship with passive drug permeation. Pharmaceutical Research, 28(5), 962–977.  https://doi.org/10.1007/s11095-010-0303-7.CrossRefGoogle Scholar
  30. Lucas, D., Castellet-Rovira, F., Villagrasa, M., Badia-Fabregat, M., Barceló, D., Vicent, T., et al. (2018). The role of sorption processes in the removal of pharmaceuticals by fungal treatment of wastewater. Science of the Total Environment, 610-611, 1147–1153.  https://doi.org/10.1016/j.scitotenv.2017.08.118.CrossRefGoogle Scholar
  31. Martínez-Hernández, V., Meffe, R., Herrera, S., Arranz, E., & de Bustamante, I. (2014). Sorption/desorption of non-hydrophobic and ionisable pharmaceutical and personal care products from reclaimed water onto/from a natural sediment. Science of the Total Environment, 472, 273–281.  https://doi.org/10.1016/j.scitotenv.2013.11.036.CrossRefGoogle Scholar
  32. Mojiri, A., Andasht Kazeroon, R., & Gholami, A. (2019). Cross-linked magnetic chitosan/activated biochar for removal of emerging micropollutants from water: optimization by the artificial neural network. Water, 11(3).  https://doi.org/10.3390/w11030551.CrossRefGoogle Scholar
  33. Nguyen, L. N., Hai, F. I., Yang, S., Kang, J., Leusch, F. D. L., Roddick, F., et al. (2014). Removal of pharmaceuticals, steroid hormones, phytoestrogens, UV-filters, industrial chemicals and pesticides by Trametes versicolor: role of biosorption and biodegradation. International Biodeterioration & Biodegradation, 88, 169–175.  https://doi.org/10.1016/j.ibiod.2013.12.017.CrossRefGoogle Scholar
  34. Rafati, L., Ehrampoush, M. H., Rafati, A. A., Mokhtari, M., & Mahvi, A. H. (2016). Modeling of adsorption kinetic and equilibrium isotherms of naproxen onto functionalized nano-clay composite adsorbent. Journal of Molecular Liquids, 224, 832–841.  https://doi.org/10.1016/j.molliq.2016.10.059.CrossRefGoogle Scholar
  35. Redlich, O., & Peterson, D. L. (1959). A useful adsorption isotherm. The Journal of Physical Chemistry, 63(6), 1024–1024.  https://doi.org/10.1021/j150576a611.CrossRefGoogle Scholar
  36. Reza, R. A., & Ahmaruzzaman, M. (2016). Removal of naproxen from aqueous environment using porous sugarcane bagasse: impact of ionic strength, hardness and surfactant. Research on Chemical Intermediates, 42(2), 1463–1485.  https://doi.org/10.1007/s11164-015-2097-z.CrossRefGoogle Scholar
  37. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquérol, J., et al. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 57, 603–619.  https://doi.org/10.1351/pac198557040603.CrossRefGoogle Scholar
  38. Stasinakis, A. S., Mermigka, S., Samaras, V. G., Farmaki, E., & Thomaidis, N. S. (2012). Occurrence of endocrine disrupters and selected pharmaceuticals in Aisonas River (Greece) and environmental risk assessment using hazard indexes. Environmental Science and Pollution Research, 19(5), 1574–1583.  https://doi.org/10.1007/s11356-011-0661-7.CrossRefGoogle Scholar
  39. Suárez, S., Carballa, M., Omil, F., & Lema, J. M. (2008). How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Reviews in Environmental Science and Bio/Technology, 7(2), 125–138.  https://doi.org/10.1007/s11157-008-9130-2.CrossRefGoogle Scholar
  40. Subbaiah, M. V., & Yun, Y. S. (2013). Biosorption of nickel (II) from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass: equilibrium, kinetics, and thermodynamic studies. Biotechnology and Bioprocess Engineering, 18(2), 280–288.  https://doi.org/10.1007/s12257-012-0401-y.CrossRefGoogle Scholar
  41. Tang, Y., Li, X.-M., Xu, Z.-C., Guo, Q.-W., Hong, C.-Y., & Bing, Y.-X. (2014). Removal of naproxen and bezafibrate by activated sludge under aerobic conditions: kinetics and effect of substrates. Biotechnology and Applied Biochemistry, 61(3), 333–341.  https://doi.org/10.1002/bab.1168.CrossRefGoogle Scholar
  42. Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M., & Barceló, D. (2012). Hospital effluent: investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 430, 109–118.  https://doi.org/10.1016/j.scitotenv.2012.04.055.CrossRefGoogle Scholar
  43. Vulliet, E., Cren-Olivé, C., & Grenier-Loustalot, M.-F. (2011). Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters. Environmental Chemistry Letters, 9(1), 103–114.  https://doi.org/10.1007/s10311-009-0253-7.CrossRefGoogle Scholar
  44. Wieszczycka, K., Zembrzuska, J., Bornikowska, J., Wojciechowska, A., & Wojciechowska, I. (2017). Removal of naproxen from water by ionic liquid-modified polymer sorbents. Chemical Engineering Research and Design, 117, 698–705.  https://doi.org/10.1016/j.cherd.2016.11.024.CrossRefGoogle Scholar
  45. Yang, Y., Jin, D., Wang, G., Liu, D., Jia, X., & Zhao, Y. (2011). Biosorption of Acid Blue 25 by unmodified and CPC-modified biomass of Penicillium YW01: kinetic study, equilibrium isotherm and FTIR analysis. Colloids and Surfaces B: Biointerfaces, 88(1), 521–526.  https://doi.org/10.1016/j.colsurfb.2011.07.047.CrossRefGoogle Scholar
  46. Yu, Z., Peldszus, S., & Huck, P. M. (2008). Adsorption characteristics of selected pharmaceuticals and an endocrine disrupting compound—naproxen, carbamazepine and nonylphenol—on activated carbon. Water Research, 42(12), 2873–2882.  https://doi.org/10.1016/j.watres.2008.02.020.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de BiotecnologíaUniversidad Autónoma Metropolitana-IztapalapaMexico CityMexico
  2. 2.Departamento de EnergíaUniversidad Autónoma Metropolitana-AzcapotzalcoMexico CityMexico

Personalised recommendations