Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Sulfur and Nitrogen Gases in the Vapor Streams from Ore Cyanidation Wastes at a Sharply Continental Climate, Western Siberia, Russia

Abstract

The article presents the results of the study of the vapor streams from sulfide-containing tailings after gold mining by cyanidation (Ursk waste heaps, Kemerovo region, Russia). The gas survey of sulfur dioxide, dimethyl sulfide, dimethyl sulfoxide, carbon disulfide, and N-containing substances concentrations was carried out using a portable device GANK-4 on a series of profiles covering the waste heaps and the surrounding area with simultaneous measurement of temperatures in the air and soil. The concentration maps-schemes of the studied gases in the surface layer were constructed. The high positive correlation of gases between themselves is established, which indicates similar mechanisms of their formation. The electrical resistivity tomography determined the internal structure of the waste heap. Active “breathing” zones were identified in which the maximum fluctuations in the concentrations of sulfur, selenium, and nitrogen-containing compounds in the near-surface air layer were recorded. Such zones are marked with lower resistances in comparison with other areas on the geo-electric profiles. There is an inverse correlation between the resistivity of the tailings and its temperature and a direct correlation between the concentration of gas in the air and the temperature of the soil. High concentrations of CS2, the volatile gas compound of the second hazard class, were found in the concentrations that exceed 6–8 times the daily average norm. Further investigation of the mine tailings seasonal transformation with the production of toxic gases deserves special attention due to high environmental risks and poor knowledge of this problem. The oxidation of ore cyanidation wastes in summer and methylation in winter due to seasonal temperature fluctuation lead to production of gases of great concern including toxic СS2.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Auken, E., Doetsch, J., Fiandaca, G., Christiansen, A. V., Gazoty, A., Cahill, A. G., & Jakobsen, R. (2014). Imaging subsurface migration of dissolved CO2 in a shallow aquifer using 3-D time-lapse electrical resistivity tomography. Journal of Applied Geophysics, 101, 31–41. https://doi.org/10.1016/j.jappgeo.2013.11.011.

  2. Bates, T. S., Lamb, B. K., Guenther, A., Dignon, J., & Stoiber, R. E. (1992). Sulfur emissions to the atmosphere from natural sources. Journal of Atmospheric Chemistry, 14, 315–337. https://doi.org/10.1007/BF00115242.

  3. Beloborodova, N. V., & Beloborodov, S. М. (2000). Metabolites of anaerobic bacteria (volatile fatty acids) and reactivity of the microorganism. Antibiotics and Chemotherapy, 2, 28–36.

  4. Bergmann, P., Schmidt-Hattenberger, C., Labitzke, T., Wagner, F. M., Just, A., Flechsig, C., & Rippe, D. (2017). Fluid injection monitoring using electrical resistivity tomography-five years of CO2 injection at Ketzin, Germany. Geophysical Prospecting, 65(3), 859–875. https://doi.org/10.1111/1365-2478.12426.

  5. Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., & Slater, L. D. (2015). The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 51(6), 3837–3866. https://doi.org/10.1002/2015WR017016.

  6. Bipp, H., & Kieczka, H. (2012). Formamides, Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. https://doi.org/10.1002/14356007.a12_001.pub2.

  7. Bolgov GP (1937) Salaire sulfides, Ursk group of polymetallic deposits Izv. Tomsk. Polytechnic Inst., №53 (11), p. 45-96 (in Russian)

  8. Bortnikova, S., Olenchenko, V., Gaskova, O., Chernii, K., Devyatova, A., & Kucher, D. (2017). Evidence of trace element emission during the combustion of sulfide-bearing metallurgical slags. Applied Geochemistry, 78, 105–115. https://doi.org/10.1016/j.apgeochem.2016.12.016.

  9. Bortnikova, S. B., Yurkevich, N. V., Abrosimova, N. A., Devyatova, A. Y., Edelev, A. V., Makas, A. L., & Troshkov, M. L. (2018). Assessment of emissions of trace elements and sulfur gases from sulfide tailings. Journal of Geochemical Exploration, 186, 256–269. https://doi.org/10.1016/j.gexplo.2017.12.008.

  10. Bortnikova, S., Yurkevich, N., Devyatova, A., Saeva, O., Shuvaeva, O., Makas, A., Troshkov, M., Abrosimova, N., Kirillov, M., Korneeva, T., & Kremleva, T. (2019). Mechanisms of low-temperature vapor-gas streams formation from sulfide mine waste. Science of the Total Environment, 647, 411–419. https://doi.org/10.1016/j.scitotenv.2018.08.024.

  11. Bowman, J. H., Barket, D. J., & Shepson, P. B. (2003). Atmospheric chemistry of nonanal. Environmental Science and Technology, 37(10), 2218–2225. https://doi.org/10.1021/es026220p.

  12. Brimblecombe, P. (2013). The global sulfur cycle. In K. Turekian & H. Holland (Eds.), Treatise on Geochemistry (pp. 559–591). Elsevier Inc.. https://doi.org/10.1016/B0-08-043751-6/08134-2.

  13. BS ISO. (1998). Soil quality - determination of the water-retention characteristic. Geneva: BS ISO.

  14. Busato, L., Boaga, J., Perri, M. T., Majone, B., Bellin, A., & Cassiani, G. (2019). Hydrogeophysical characterization and monitoring of the hyporheic and riparian zones: The Vermigliana Creek case study. Science of the Total Environment, 648, 1105–1120. https://doi.org/10.1016/j.scitotenv.2018.08.179.

  15. Cahill, A. G., Steelman, C. M., Forde, O., Kuloyo, O., Ruff, S. E., Mayer, B., Mayer, K. U., Strous, M., Ryan, M. C., Cherry, J. A., & Parker, B. L. (2017). Mobility and persistence of methane in groundwater in a controlled-release field experiment. Nature Geoscience, 10(4), 289. https://doi.org/10.1038/ngeo2919.

  16. Carrión, O., Pratscher, J., Curson, A. R. J., Williams, B. T., Rostant, W. G., Murrell, J. C., & Todd, J. D. (2017). Methanethiol-dependent dimethylsulfide production in soil environments. The ISME Journal, 11, 2379–2390. https://doi.org/10.1038/ismej.2017.105.

  17. Charlson, R. J., Lovelock, J. E., Andreae, M. O., & Warren, S. G. (1987). Oceanic phytoplankton, atmospheric Sulphur, cloud albedo and climate. Nature, 326, 655–661. https://doi.org/10.1038/326655a0.

  18. Distanov, E.G., 1977. Pyrite-Polymetallic Deposits of Siberia [in Russian]. Nauka, Novosibirsk.

  19. Epov, M. I., Yurkevich, N. V., Bortnikova, S. B., Karin, Y. G., & Saeva, O. P. (2017). Analysis of mine waste by geocheimical and geophysical methods (a case study of the mine tailing dump of the Salair ore-processing plant). Russian Geology and Geophysics, 58(12), 1543–1552. https://doi.org/10.1016/j.rgg.2017.11.014.

  20. GN (Hygienic Norms) no. 2.1.6.1338–03. (2003). Maximum permissible concentration of chemical pollutants in the atmospheric air populations. M .: Ministry of Health of the Russia.

  21. Golebiowski, T., Zogala, B., Mendecki, M. J., & Malysa, T. (2018). The utility of rock-bolts as long electrodes for underground ERT surveys in mine settings. Journal of Applied Geophysics, 155, 122–130. https://doi.org/10.1016/j.jappgeo.2018.05.010.

  22. Gourdal, M., Lizotte, M., Massé, G., Gosselin, M., Poulin, M., Scarratt, M., Charette, J., & Levasseur, M. (2018). Dimethyl sulfide dynamics in first-year sea ice melt ponds in the Canadian Arctic archipelago. Biogeosciences, 15(10), 3169–3188. https://doi.org/10.5194/bg-15-3169-2018.

  23. Guérin, R. (2005). Borehole and surface-based hydrogeophysics. Hydrogeology Journal, 13(1), 251–254. https://doi.org/10.1007/s10040-004-0415-4.

  24. Gupta, N., Balomajumder, C., & Agarwal, V. K. (2010). Enzymatic mechanism and biochemistry for cyanide degradation: A review. Journal of Hazardous Materials, 176(1–3), 1–13. https://doi.org/10.1016/j.jhazmat.2009.11.038.

  25. Hale, M. (1993). Mineral deposits and chalcogen gases. Mineralogical Magazine, 57, 599–606. https://doi.org/10.1180/minmag.1993.057.389.04.

  26. Hale, M. (2010). Gas geochemistry and deeply buried mineral deposits: The contribution of the applied geochemistry research group, Imperial College of Science and Technology, London. Geochemistry Exploration Environment Analysis, 10, 261–267. https://doi.org/10.1144/1467-7873/09-236.

  27. Hayes, A. C., Liss, S. N., & Allen, D. G. (2010). Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol. Applied and Environmental Microbiology, 76, 5423–5431. https://doi.org/10.1128/AEM.00076-10.

  28. Johnson, S. D., & Jürgens, A. (2010). Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. South African Journal of Botany, 76(4), 796–807. https://doi.org/10.1016/j.sajb.2010.07.012.

  29. Jougnot, D., Jiménez-Martínez, J., Legendre, R., Le Borgne, T., Méheust, Y., & Linde, N. (2018). Impact of small-scale saline tracer heterogeneity on electrical resistivity monitoring in fully and partially saturated porous media: Insights from geoelectrical milli-fluidic experiments. Advances in Water Resources, 113, 295–309. https://doi.org/10.1016/j.advwatres.2018.01.014.

  30. Kiene, R. P. (1990). Dimethyl sulfide production from dimethylsulfoniopropionate in coastal seawater samples and bacterial cultures. Applied and Environmental Microbiology, 56, 3292–3297.

  31. Kiene, R. P., Linn, L. J., & Bruton, J. A. (2000). New and important roles for DMSP in marine microbial communities. Journal of Sea Research, 43(3–4), 209–224. https://doi.org/10.1016/S1385-1101(00)00023-X.

  32. Koch, T., & Dahl, C. (2018). A novel bacterial sulfur oxidation pathway provides a new link between the cycles of organic and inorganic sulfur compounds. The ISME Journal, 12, 2479–2491. https://doi.org/10.1038/s41396-018-0209-7.

  33. Kovalev КR (1969) Features of the formation of ores of pyrite-polymetallic deposits of the North-Eastern Salair and East Tuva // Сandidate’s dissertation of geol. mineral. sciences. Novosibirsk, 32 p (in Russian)

  34. Kremer, T., Vieira, C., & Maineult, A. (2018). ERT monitoring of gas injection into water saturated sands: Modeling and inversion of cross-hole laboratory data. Journal of Applied Geophysics, 158, 11–28. https://doi.org/10.1016/j.jappgeo.2018.06.001.

  35. Kruszewski, Ł., Fabiańska, M. J., Ciesielczuk, J., Segit, T., Orłowski, R., Motyliński, R., Kusy, D., & Moszumańska, I. (2018). First multi-tool exploration of a gas-condensate-pyrolysate system from the environment of burning coal mine heaps: An in situ FTIR and laboratory GC and PXRD study based on upper Silesian materials. Science of the Total Environment, 640, 1044–1071. https://doi.org/10.1016/j.scitotenv.2018.05.319.

  36. Lazareva, E. V., Myagkaya, I. N., Kirichenko, I. S., Gustaytis, M. A., & Zhmodik, S. M. (2019). Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. Science of the Total Environment, 660, 468–483. https://doi.org/10.1016/j.scitotenv.2018.12.467.

  37. Ledyard, K. M., & Dacey, J. W. H. (1996). Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnology and Oceanography, 41, 33–40. https://doi.org/10.4319/lo.1996.41.1.0033.

  38. Lee, P. A., & de Mora, S. J. (1999). Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: Speculations on itsorigin and possible biological role. Journal of Phycology, 35, 8–18. https://doi.org/10.1046/j.1529-8817.1999.3510008.x.

  39. Loke, M. H. (2000). Electrical imaging surveys for environmental and engineering studies, a practical guide to 2D and 3D surveys. Malaysia: Penang.

  40. Makas, A. L., & Troshkov, M. L. (2004). Field gas chromatography – Mass spectrometry for fast analysis. Journal of Chromatography, B, 800(1–2), 55–61. https://doi.org/10.1016/j.jchromb.2003.08.054.

  41. Malin, G., & Kirst, G. O. (1997). Algal production of dimethyl sulfide and its atmospheric role. Journal of Phycology, 33, 889–896. https://doi.org/10.1111/j.0022-3646.1997.00889.x.

  42. Mansfield, J. W. (2000). Antimicrobial compounds and resistance: The role of phytoalexins and phytoanticipins. In A. J. Slusarenko, R. S. S. Fraser, & L. C. van Loon (Eds.), Mechanisms of resistance to plant diseases (pp. 325–370). Dodrecht: Kluwer Academic Publishers.

  43. Meng, T., Zhu, T., Zhang, J., & Cai, Z. (2015). Effect of liming on sulfate transformation and sulfur gas emissions in degraded vegetable soil treated by reductive soil disinfestation. Journal of Environmental Sciences, 36, 112–120. https://doi.org/10.1016/j.jes.2015.03.032.

  44. Nicholson, R. A., Peachey, D., & Ball, T. K. (1988). Tests on use of Sulphur gases in soils to detect hidden mineralization. Transactions of the Institution of Mining and Metallurgy, 971, B57–B63.

  45. Olenchenko, V. V., Kucher, D. O., Bortnikova, S. B., Gas’kova, O. L., Edelev, A. V., & Gora, M. P. (2016). Vertical and lateral spreading of highly mineralized acid drainage solutions (Ur dump, Salair): Electrical resistivity tomography and hydrogeochemical data. Russian Geology and Geophysics, 57(4), 617–628. https://doi.org/10.1016/j.rgg.2015.05.014.

  46. Osipova, P. S., Olenchenko, V. V., Bortnikova, S. B., & Yurkevich, N. V. (2018). Dependence of the electrical resistivity of mine tailings from the daily temperature dynamics. Interexpo GEO-Siberia, 2(4), 68–74. https://doi.org/10.18303/2618-981X-2018-4-68-74.

  47. Pereira, P. T., Arrabaça, J. D., & Amaral-Collaço, M. T. (1996). Isolation, selection and characterization of a cyanide-degrading fungus from an industrial effluent. International Biodeterioration & Biodegradation, 37(1–2), 45–52. https://doi.org/10.1016/0964-8305(95)00086-0.

  48. Pticyn, A. B. (2006). Teoreticheskaja geohimija. Novosibirsk: Akademicheskoe izdatel'stvo Geo.

  49. RMH. (2003). Maximum permissible concentration (MPC) of pollutants in the atmospheric air of populated areas HN 2.1.6.1338–03, 2003. Moscow: Russian Ministry of Health.

  50. Simó, R. (2001). Production of atmospheric sulfur by oceanic plankton: Biogeochemical, ecological and evolutionary links. Trends in Ecology and Evolution, 16, 287–294. https://doi.org/10.1016/S0169-5347(01)02152-8.

  51. Statheropoulosa, M., Agapioua, A., Spiliopoulou, C., Pallis, G. C., & Sianos, E. (2007). Environmental aspects of VOCs evolved in the early stages of human decomposition. Science of the Total Environment, 385(1–3), 221–227. https://doi.org/10.1016/j.scitotenv.2007.07.003.

  52. Steelman, C. M., Klazinga, D. R., Cahill, A. G., Endres, A. L., & Parker, B. L. (2017). Monitoring the evolution and migration of a methane gas plume in an unconfined sandy aquifer using time-lapse GPR and ERT. Journal of Contaminant Hydrology, 205, 12–24. https://doi.org/10.1016/j.jconhyd.2017.08.011.

  53. Stensmyr, M. C., Urru, I., Collu, I. U., Celander, M., Hansson, B. S., & Angioy, A.-M. (2002). Rotting smell of dead-horse arum florets. Nature, 420(6916), 625–626. https://doi.org/10.1038/420625.

  54. Sunda, W., Kieber, D. J., Kiene, R. P., & Huntsman, S. (2002). An an-tioxidant function for DMSP and DMS in marine algae. Nature, 418, 317–320. https://doi.org/10.1038/nature00851.

  55. Terry, N., Slater, L., Comas, X., Reeve, A. S., Schäfer, K. V., & Yu, Z. (2016). Free phase gas processes in a northern peatland inferred from autonomous field-scale resistivity imaging. Water Resources Research, 52(4), 2996–3018. https://doi.org/10.1002/2015WR018111.

  56. Vila-Costa, M., Simó, R., Harada, H., Gasol, J. M., Slezak, D., & Kiene, R. P. (2006). Dimethylsulfoniopropionate uptake by marine phytoplankton. Science, 314, 652–654. https://doi.org/10.1126/science.1131043.

  57. Xue, Z., Tanase, D., & Watanabe, J. (2006). Estimation of CO2 saturation from time-lapse CO2 well logging in an onshore aquifer, Nagaoka, Japan. Exploration Geophysics, 37, 19–29. https://doi.org/10.1071/EG06019.

  58. Yurkevich, N., Bortnikova, S., Olenchenko, V., Abrosimova, N., Saeva, O., & Karin, Y. (2017a). Study of water-rock interaction in sulfide mining tailings using geochemical and geoelectrical methods. Procedia Earth and Planetary Science, 17, 112–115. https://doi.org/10.1016/j.proeps.2016.12.019.

  59. Yurkevich, N. V., Abrosimova, N. A., Bortnikova, S. B., Karin, Y. G., & Saeva, O. P. (2017b). Geophysical investigations for evaluation of environmental pollution in a mine tailings area. Toxicological and Environment Chemistry, 99, 1328–1345. https://doi.org/10.1080/02772248.2017.1371308.

  60. Zerkalov, V. I. "New minerals in ores of the Ur deposits, Salair." Vestnik (1959).

Download references

Acknowledgments

The authors are grateful to the Assistant Editors for the editorial handling of the manuscript.

Author information

Correspondence to Nataliya Yurkevich.

Ethics declarations

Funding

This research was funded by the Russian Science Foundation [19-17-00134].

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yurkevich, N., Bortnikova, S., Abrosimova, N. et al. Sulfur and Nitrogen Gases in the Vapor Streams from Ore Cyanidation Wastes at a Sharply Continental Climate, Western Siberia, Russia. Water Air Soil Pollut 230, 307 (2019). https://doi.org/10.1007/s11270-019-4363-y

Download citation

Keywords

  • Waste heap
  • Gas-vapor streams
  • Organic gases
  • Channels of infiltration
  • Micro-electrical resistivity tomography