Advertisement

Water, Air, & Soil Pollution

, 230:293 | Cite as

Membrane Filtration of Effluent from a One-Stage Bioreactor Treating Anaerobic Digester Supernatant

  • Magdalena ZielińskaEmail author
  • Wioleta Mikucka
Article

Abstract

A challenge in side-stream treatment of anaerobic digester supernatant is that the effluent does not meet discharge standards. To address this challenge, this study tested tubular multichannel ceramic microfiltration (MF) and ultrafiltration (UF) membranes for the post-treatment of anaerobic digester supernatant. Pollutant rejection (total suspended solids (TSS), COD, total nitrogen (TN), and total phosphorus (TP)), color removal, and membrane susceptibility to fouling were determined at various transmembrane pressures (TMPs) (0.2, 0.3, 0.4, 0.5 MPa). Both methods completely removed TSS. In MF, COD was removed with 48–76% efficiency at 0.2–0.4 MPa. In UF, COD removal efficiency was slightly higher, reaching 83.7% at 0.4 MPa. With both methods, pollutant removal did not increase at TMP of 0.5 MPa. With both MF and UF, color was reduced by 54–100%, irrespective of the TMP. At 0.2–0.4 MPa, membrane resistance was lower and permeate flux was much higher with MF than UF. At 0.5 MPa, the methods differed only slightly from each other. Due to the larger cut-off, flux decline was slower in MF (0.7 h−1) than in UF (1.1 h−1), as the larger pore-size favors less foulant deposition. Thus, taking into account rejection efficiency, capacity, washing frequency, and cost (pressure), these results indicate that MF at 0.4 MPa is the most effective variant for post-treatment of anaerobic digester supernatant. With this variant, the almost colorless permeate contained 25 mg COD/L, no TSS, 55 mg TN/L (75% in the form of nitrites and nitrates), and 8.5 mg TP/L, thus meeting criteria for water to be used in irrigation or algae cultivation.

Keywords

Anaerobic digester supernatant Microfiltration Ultrafiltration Fouling 

Notes

Funding Information

This study was supported by the National Science Centre, Poland (grant number 2016/21/B/NZ9/03630).

Wioleta Mikucka is a recipient of a scholarship from the Programme Interdisciplinary Doctoral Studies in Bioeconomy (POWR.03.02.00-00-I034/16-00), which is funded by the European Social Fund.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Andrade, L. H., Mendes, F. D. S., Espindola, J. C., & Amaral, M. C. S. (2014). Nanofiltration as tertiary treatment for the reuse of dairy wastewater treated by membrane bioreactor. Separation and Purification Technology, 126, 21–29.CrossRefGoogle Scholar
  2. Aouni, A., Fersi, C., Cuartas-Uribe, B., Bes-Pia, A., Alcaina-Miranda, M. I., & Dhahbi, M. (2011). Study of membrane fouling using synthetic model solutions in UF and NF processes. Chemical Engineering Journal, 175, 192–200.CrossRefGoogle Scholar
  3. APHA Standard methods for the examination of water and wastewater (1992). 18th edn. APHA, AWWA and WEF, Washington.Google Scholar
  4. Bernat, K., Kulikowska, D., Zielińska, M., Cydzik-Kwiatkowska, A., & Wojnowska-Baryła, I. (2012). The treatment of anaerobic digester supernatant by combined partial ammonium oxidation and denitrification. Desalination and Water Treatment, 37, 223–229.CrossRefGoogle Scholar
  5. Bixio, D., Thoeye, C., De Koning, J., Joksimovic, D., Savic, D., Wintgens, T., & Melin, T. (2006). Wastewater reuse in Europe. Desalination, 187, 89–101.CrossRefGoogle Scholar
  6. Buntner, D., Sánchez, A., & Garrido, J. M. (2013). Feasibility of combined UASB and MBR system in dairy wastewater treatment at ambient temperatures. Chemical Engineering Journal, 230, 475–481.CrossRefGoogle Scholar
  7. Cydzik-Kwiatkowska, A., Zielińska, M., Bernat, K., Wojnowska-Baryła, I., & Truchan, T. (2013). Treatment of high-ammonium anaerobic digester supernatant by aerobic granular sludge and ultrafiltration processes. Chemosphere, 90, 2208–2215.CrossRefGoogle Scholar
  8. Dreissen, W., & Reitsma, G. (2011). One-step Anammox process a sustainable way to remove ammoniacal nitrogen. UK Water Projects, 101–102.Google Scholar
  9. Fan, X., Tao, Y., Wei, D., Zhang, X., Lei, Y., & Noguchi, H. (2015). Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration. Frontiers of Environmental Science & Engineering, 9, 112–120.CrossRefGoogle Scholar
  10. Fux, C., Boehler, M., Huber, P., Brunner, I., & Siegrist, H. (2002). Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. Journal of Biotechnology, 99, 295–306.CrossRefGoogle Scholar
  11. Guldhe, A., Ansari, F. A., Singh, P., & Bux, F. (2017). Heterotrophic cultivation of microalgae using aquaculture wastewater: a biorefinery concept for biomass production and nutrient remediation. Ecological Engineering, 99, 47–53.CrossRefGoogle Scholar
  12. Huang, X., Sun, K., Wei, Q., Urata, K., Yamashita, Y., Hong, N., Hama, T., & Kawagoshi, Y. (2016). One-stage partial nitritation and anammox in membrane bioreactor. Environmental Science and Pollution Research, 23, 11149–11162.CrossRefGoogle Scholar
  13. Isik, O., Abdelrahman, A. M., Ozgun, H., Ersahin, M. E., Demir, I., & Koyuncu, I. (2019). Comparative evaluation of ultrafiltration and dynamic membranes in an aerobic membrane bioreactor for municipal wastewater treatment. Environmental Science and Pollution Research.  https://doi.org/10.1007/s11356-019-04409-6.
  14. Janus, H. M., & van der Roest, H. F. (1997). Don’t reject the idea of treating reject water. Water Science and Technology, 35, 27–34.CrossRefGoogle Scholar
  15. Jetten, M. S., van Niftrik, L., Strous, M., Kartal, B., Keltjens, J. T., & Op den Camp, H. J. (2009). Biochemistry and molecular biology of anammox bacteria. Critical Reviews in Biochemistry and Molecular Biology, 44, 65–84.CrossRefGoogle Scholar
  16. Kim, I. S., & Jang, N. (2006). The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR). Water Research, 40, 2756–2764.CrossRefGoogle Scholar
  17. Kumar, R. V., Goswami, L., Pakshirajan, K., & Pugazhenthi, G. (2016). Dairy wastewater treatment using a novel low cost tubular ceramic membrane and membrane fouling mechanism using pore blocking models. Journal of Water Process Engineering, 13, 168–175.CrossRefGoogle Scholar
  18. Laabs, C. N., Amy, G. L., & Jekel, M. (2006). Understanding the size and character of fouling-causing substances from effluent organic matter (EfOM) in low – pressure membrane filtration. Environmental Science & Technology, 40, 4495–4499.CrossRefGoogle Scholar
  19. Langone, M., Yan, J., Haaijer, S. C., Op den Camp, H. J., Jetten, M. S., & Andreottola, G. (2014). Coexistence of nitrifying, anammox and denitrifying bacteria in a sequencing batch reactor. Frontiers in Microbiology, 5, 1–12.CrossRefGoogle Scholar
  20. Lee, S. J., Dilaver, M., Park, P. K., & Kim, J. H. (2013). Comparative analysis of fouling characteristics of ceramic and polymeric microfiltration membranes using filtration models. Journal of Membrane Science, 432, 97–105.CrossRefGoogle Scholar
  21. Lim, A., & Bai, R. (2003). Membrane fouling and cleaning in microfiltration of activated sludge wastewater. Journal of Membrane Science, 216, 279–290.CrossRefGoogle Scholar
  22. Lu, Q., de Toledo, R. A., & Shim, H. (2016). Effect of COD/TP ratio on biological nutrient removal in A2O and SBR processes coupled with microfiltration and effluent reuse potential. Environmental Technology, 37, 1461–1466.CrossRefGoogle Scholar
  23. Luo, J., Ding, L., Qi, B., Jaffrin, M. Y., & Wan, Y. (2011). A two-stage ultrafiltration and nanofiltration process for recycling dairy wastewater. Bioresource Technology, 102, 7437–7442.CrossRefGoogle Scholar
  24. Luo, J., Meyer, A. S., Jonsson, G., & Pinelo, M. (2014). Enzyme immobilization by fouling in ultrafiltration membranes:impacy of membranme configuration and type on flux behavior and biocatalytic conversion efficacy. Biochemical Engineering Journal, 83, 79–89.CrossRefGoogle Scholar
  25. Majewska-Nowak, K. (2005). Fouling of hydrophilic ultrafiltration membranes applied to water recovery from dye and surfactant solutions. Environment Protection Engineering, 31, 3–4.Google Scholar
  26. Muthukumaran, S., Nguyen, D. A., & Baskaran, K. (2011). Performance evaluation of different ultrafiltration membranes for the reclamation and reuse of secondary effluent. Desalination, 279, 383–389.CrossRefGoogle Scholar
  27. Pollice, A., Lopez, A., Laera, G., Rubino, P., & Lonigro, A. (2004). Tertiary filtered municipal wastewater as alternative water source in agriculture: a field investigation in southern Italy. Science of the Total Environment, 324, 201–210.CrossRefGoogle Scholar
  28. Qiu, Q., Zhao, B. W., & Qiu, L. P. (2018). Development of flat ceramic membrane technology on municipal wastewater treatment. IOP Conf. Series: Materials Science and Engineering, 392  https://doi.org/10.1088/1757-899X/392/2/022036.CrossRefGoogle Scholar
  29. Sadr, S. M. K., & Saroj, D. P. (2015). Membrane technologies for municipal wastewater treatment. In A. Basile, A. Cassano, N. K. Rastogi (Eds.), Advances in membrane technologies for water treatment(pp. 443–463). 1st edn. Elsevier Ltd.Google Scholar
  30. Sadr, S. M. K., Saroj, D. P., Kouchaki, S., Ilemobade, A. A., & Ouki, S. K. (2015). A group decision-making tool for the application of membrane technologies in different water reuse scenarios. Journal of Environmental Economics and Management, 156, 97–108.Google Scholar
  31. Sun, X., Wang, C., Li, Y., Wang, W., & Wei, J. (2015). Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination, 355, 68–74.CrossRefGoogle Scholar
  32. Waeger, F., Delhaye, T., & Fuchs, W. (2010). The use of ceramic microfiltration and ultrafiltration membranes for particle removal from anaerobic digester effluents. Separation and Purification Technology, 73, 271–278.CrossRefGoogle Scholar
  33. Wang, Z., Wu, Z., & Tang, S. (2009). Extracellular polymeric substances (EPS) properties and their effects on membrane fouling in a submerged membrane bioreactor. Water Research, 43, 2504–2512.CrossRefGoogle Scholar
  34. Wang, L., Liang, W., Chen, W., Zhang, W., Mo, J., Liang, K., Tang, B., Zheng, Y., & Jiang, F. (2018). Integrated aerobic granular sludge and membrane process for enabling municipal wastewater treatment and reuse water production. Chemical Engineering Journal, 337, 300–311.CrossRefGoogle Scholar
  35. Zhang, X., Chen, Y., Konsowa, A. H., Zhu, X., & John, C. (2009). Evaluation of an innovative polyvinyl chloride (PVC) ultrafiltration membrane for wastewater treatment. Separation and Purification Technology, 70, 71–78.CrossRefGoogle Scholar
  36. Zielińska, M., & Galik, M. (2017). Use of ceramic membranes in a membrane filtration supported by coagulation for the treatment of dairy wastewater. Water, Air, & Soil Pollution, 228, 1–12.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental BiotechnologyUniversity of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations