Response Surface Methodology Approach Applied to the Study of Arsenic (V) Migration by Facilitated Transport in Polymer Inclusion Membranes


The present study provides an alternative view of the applications of response surface methodology (RSM) coupled to the Derringer’s desirability function (DF) to analyze and optimize system’s composition to target different environmental applications related to the transport of As (V) through polymer inclusion membranes (PIMs). In this case, membranes contained cellulose triacetate (CTA), as support, trioctylmethylammonium chloride (Aliquat 336 = A336), as carrier, and tris(2-ethylhexyl) phosphate (TEHP), as plasticizer. A four-factor Doehlert design (variables: CTA weight, A336 and TEHP content, and HCl concentration) was employed. Statistical data analyses showed that A336, TEHP, CTA, and different kinds of interactions among them determined As (V) migration, depending on the measured response (PFeed, PStripping, ΔpH, or PIM thickness). For instance, an efficient system able to maximize the permeabilities, without altering the pH of feed solution, is obtained using as composition 22% CTA, 48% A336, and 30% TEHP and 0.1 mol/L HCl solution in the strip phase. If the change of pH is not relevant, 40% CTA and 60% A336 lead to a higher transport when the strip solution conditions are maintained. Furthermore, the composition 46% CTA, 35% A336, and 20% TEHP is suggested for passive sampling devices with speciation capabilities.


This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3


  1. Alizadeh, T., Rashedi, M., Hanifehpour, Y., & Joo, S. W. (2015). Improvement of durability and analytical characteristics of arsenic-imprinted polymer-based PVC membrane electrode via surface modification of nano-sized imprinted polymer particles: part 2. Electrochimica Acta, 178, 877–885.

  2. Almeida, M. I., Cattrall, R. W., & Kolev, S. D. (2012). Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). Journal of Membrane Science, 415-416, 9–23.

  3. Ballinas, M. L., Rodríguez de San Miguel, E., Rodríguez, M. T. J., Silva, O., Muñoz, M., & De Gyves, J. (2004). Arsenic(V) removal with polymer inclusion membranes from sulfuric acid media using DBBP as carrier. Environmental Science & Technology, 38(3), 886–891.

  4. Bey, S., Criscuoli, A., Figoli, A., Leopold, A., Simone, S., Benamor, M., et al. (2010). Removal of As(V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant. Desalination, 264(3), 193–200.

  5. Bhattacharya, P., Welch, A. H., Stollenwerk, K. G., McLaughlin, M. J., Bundschuh, J., & Panaullah, G. (2007). Arsenic in the environment: biology and chemistry. Science of the Total Environment, 379(2), 109–120.

  6. Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219.

  7. Ferraz, H. C., Duarte, L. T., Di Luccio, M., Alves, T. L. M., Habert, A. C., & Borges, C. P. (2007). Recent achievements in facilitated transport membranes for separation processes. Brazilian Journal of Chemical Engineering, 24(1), 101–118.

  8. Ferreira, S. L. C., dos Santos, W. N. L., Quintella, C. M., Neto, B. C. B., & Bosque-Sendra, J. M. (2004). Doehlert matrix: a chemometric tool for analytical chemistry—review. Talanta, 63(4), 1061–1067.

  9. Fitrianto, A., & Midi, H. (2012). Multi-response optimization via desirability function for the Black Liquor DATA. Journal of Science and Technology, 4(1), 91–102.

  10. Fontàs, C., Tayeb, R., Dhahbi, M., Gaudichet, E., Thominette, F., Roy, P., et al. (2007). Polymer inclusion membranes: the concept of fixed sites membrane revised. Journal of Membrane Science, 290(1), 62–72.

  11. Fontàs, C., Vera, R., Batalla, A., Kolev, S. D., & Anticó, E. (2014). A novel low-cost detection method for screening of arsenic in groundwater. Environmental Science and Pollution Research, 21(20), 11682–11688.

  12. Grieshaber, D., MacKenzie, R., Vörös, J., & Reimhult, E. (2008). Electrochemical biosensors - sensor principles and architectures. Sensors (Basel), 8(3), 1400–1458.

  13. Güell, R., Fontàs, C., Salvadó, V., & Anticó, E. (2010). Modelling of liquid–liquid extraction and liquid membrane separation of arsenic species in environmental matrices. Separation and Purification Technology, 72(3), 319–325.

  14. Güell, R., Anticó, E., Kolev, S. D., Benavente, J., Salvadó, V., & Fontàs, C. (2011a). Development and characterization of polymer inclusion membranes for the separation and speciation of inorganic As species. Journal of Membrane Science, 383(1), 88–95.

  15. Güell, R., Fontàs, C., Anticó, E., Salvadó, V., Crespo, J. G., & Velizarov, S. (2011b). Transport and separation of arsenate and arsenite from aqueous media by supported liquid and anion-exchange membranes. Separation and Purification Technology, 80(3), 428–434.

  16. Hughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. Toxicology Letters, 133(1), 1–16.

  17. Karanam, S. K., & Medicherla, N. R. (2010). Application of Doehlert experimental design for the optimization of medium constituents for the production of L-asparaginase from Palm Kernal cake (Elaeis guineensis). Journal of Microbial & Biochemical Technology, 2(1), 007–012.

  18. Kislik, V. (2009). Liquid membranes: principles and applications in chemical separations and wastewater treatment (First ed.). Great Britain: Elsevier Science.

  19. Lewis, G. A., Mathieu, D., & Phan-Tan-Luu, R. (1998). Pharmaceutical experimental design (First ed.). New York: CRC press.

  20. Mang, D. Y., Abdou, A. B., Njintang, N. Y., Djiogue, E. J. M., Loura, B. B., & Mbofung, M. C. (2015). Application of desirability-function and RSM to optimize antioxidant properties of mucuna milk. Journal of Food Measurement and Characterization, 9(4), 495–507.

  21. Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—A critical review. Journal of Hazardous Materials, 142(1), 1–53.

  22. Mohapatra, P. K., Pathak, P. N., Kelkar, A., & Manchanda, V. K. (2004). Novel polymer inclusion membrane containing a macrocyclic ionophore for selective removal of strontium from nuclear waste solution. New Journal of Chemistry, 28(8), 1004–1009.

  23. Noble, R., Koval, C., & Pellegrino, J. (1989). Facilitated transport membrane systems. Chemical Engineering Progress, 85, 58–70.

  24. Ouejhani, A., Hellal, F., Dachraoui, M., Lallevé, G., & Fauvarque, J. F. (2008). Application of Doehlert matrix to the study of electrochemical oxidation of Cr(III) to Cr(VI) in order to recover chromium from wastewater tanning baths. Journal of Hazardous Materials, 157(2), 423–431.

  25. Owlad, M., Aroua, M. K., Daud, W. A. W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: a review. Water, Air, and Soil Pollution, 200(1), 59–77.

  26. Pont, N., Salvadó, V., & Fontàs, C. (2008). Selective transport and removal of Cd from chloride solutions by polymer inclusion membranes. Journal of Membrane Science, 318(1), 340–345.

  27. Rahman, N., & Nasir, M. (2018). Application of Box–Behnken design and desirability function in the optimization of Cd(II) removal from aqueous solution using poly(o-phenylenediamine)/hydrous zirconium oxide composite: equilibrium modeling, kinetic and thermodynamic studies. Environmental Science and Pollution Research, 25(26), 26114–26134.

  28. Rea, R., Angelis, M. G. D., & Baschetti, M. G. (2019). Models for facilitated transport membranes: a review. Membranes, 9(2), 1–55.

  29. Rivas, B. L., Sánchez, J., & Palencia, M. (2016). Organic membranes and polymers for the removal of pollutants. In P. Visakh & O. Nazarenko (Eds.), Nanostructured polymer membranes (Vol. 1, pp. 203–236). Beverly: Scrivener Publishing.

  30. Rodríguez de San Miguel, E., Garduño-García, A. V., Aguilar, J. C., & de Gyves, J. (2007). Gold(III) Transport through polymer inclusion membranes: efficiency factors and pertraction mechanism using Kelex 100 as carrier. Industrial & Engineering Chemistry Research, 46(9), 2861–2869.

  31. Rodríguez de San Miguel, E., Aguilar, J. C., & de Gyves, J. (2008). Structural effects on metal ion migration across polymer inclusion membranes: dependence of transport profiles on nature of active plasticizer. Journal of Membrane Science, 307(1), 105–116.

  32. Singh, N., Kumar, D., & Sahu, A. (2007). Arsenic in the environment: effects on human health and possible prevention. Journal of Environmental Biology, 28(2), 359–365.

  33. Subba Rao, R. V., Sivakumar, P., Natarajan, R., & Vasudeva Rao, P. R. (2002). Effect of Aliquat 336 concentration on transportation of hydrochloric acid across supported liquid membrane. Journal of Radioanalytical and Nuclear Chemistry, 252(1), 95–98.

  34. Trabelsi, S., Oturan, N., Bellakhal, N., & Oturan, M. A. (2012). Application of Doehlert matrix to determine the optimal conditions for landfill leachate treatment by electro-Fenton process. Journal of Materials and Environmental Science, 3(3), 426–433.

  35. Vázquez, M. I., Romero, V., Fontàs, C., Anticó, E., & Benavente, J. (2014). Polymer inclusion membranes (PIMs) with the ionic liquid (IL) Aliquat 336 as extractant: effect of base polymer and IL concentration on their physical–chemical and elastic characteristics. Journal of Membrane Science, 455, 312–319.

  36. Vera, R., Fontas, C., & Antıco, E. (2017). Analytical method development for arsenic monitoring in natural waters based on a polymer inclusion membrane system. In 15th International Conference on Environmental Science and Technology Rhodes Island, Greece, 2017: 2017.

  37. Vera, R., Anticó, E., & Fontàs, C. (2018). The use of a polymer inclusion membrane for arsenate determination in groundwater. Water, 10(8), 1–10.

  38. Vrana, B., Allan, I. J., Greenwood, R., Mills, G. A., Dominiak, E., Svensson, K., et al. (2005). Passive sampling techniques for monitoring pollutants in water. TrAC Trends in Analytical Chemistry, 24(10), 845–868.

Download references


The authors also acknowledge Q. Nadia Marcela Munguía Acevedo and Q.F.B. María Guadalupe Espejel Maya for technical services.

Funding Information

Y. Rojas-Challa acknowledges DGAPA-UNAM for her postdoctoral grant. Financial support from DGAPA-UNAM (PAPIIT IN229219) is gratefully acknowledged.

Author information

Correspondence to Yahsé Rojas-Challa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


• As (V) transport analysis and optimization through RSM

• Doehlert design application to optimize the system’s composition

• Use of desirability function to target different environmental applications

• Study of interactions among CTA, A336, and TEHP in arsenic transport

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rojas-Challa, Y., Rodríguez de San Miguel, E. & de Gyves, J. Response Surface Methodology Approach Applied to the Study of Arsenic (V) Migration by Facilitated Transport in Polymer Inclusion Membranes. Water Air Soil Pollut 231, 33 (2020) doi:10.1007/s11270-019-4347-y

Download citation


  • Arsenic
  • Doehlert design
  • Polymer inclusion membrane (PIM)
  • Response surface methodology (RSM)