Advertisement

Water, Air, & Soil Pollution

, 230:283 | Cite as

Evaluation of Inoculum Sources for Aerobic Treatment of 2,3,4-Trifluoroaniline During Start-up and Shock

  • Zhi-Qing ZhaoEmail author
  • Xiao-Li Shen
  • Tu-Cai Zheng
  • Ghulam Abbas
  • Rui Fan
  • Yan-Mei Li
Article
  • 35 Downloads

Abstract

Contamination with fluoroaromatics (FAs), particularly polyfluorinated aniline, is becoming a serious environmental problem worldwide. To shorten the start-up time, and increase the stability of treatment systems, this work focused on the effects of three seeding sources on treatment performances of 2,3,4-trifluoroaniline (2,3,4-TFA) during start-up and shock, as well as the acclimated strategy. After 246–323 days of acclimation in a stepwise feeding according to the inhibition degree, three sequencing batch reactors (SBRs) successfully achieved efficient removal, i.e., 300.00 mg/L of 2,3,4-TFA, with over 95.00% of degradation efficiency and 60.00–80.00% of defluorination rates. The sludge obtained from the fluorizated hydrocarbon wastewater treatment plant(FHS) without prior exposure to fluoroaniline was determined to be optimal, based on the observed shortest start-up time of 246 days, the highest defluorination rate of 70.00–80.00%, the fastest recovery time of 7 days after shock, and the highest microbial diversity with nine dominant bacterial groups. Furthermore, compared with the sludge obtained from pharmaceutical wastewater containing part of municipal wastewater treatment plant(PMS), the seeding source used in treating the comprehensive wastewater in industrial park (CIS) exhibited earlier defluorination reaction, higher defluorination rate and microbial diversity, but lower shock resistance. High-throughput sequencing demonstrated that microbial diversity was dependent on the origin of the inoculum after acclimation. We identified two predominant phyla in PMS, namely, Deinococcus-Thermus (24.43%) and Bacteroidetes (18.44%), whereas these were Acidobacteria and Chloroflexi in FHS and CIS. During the shock of 400 mg/L 2,3,4-TFA, the predominant bacteria norank_f_Blastocatellaceae and norank_f_Methylobacteriaceae disappeared, and the defluorination reaction hardly occurred, indicating that the bacterial genera could contribute to the defluorination reaction.

Keywords

Inoculum sources Acclimation Shock Microbioal community 2,3,4-trifluoroaniline 

Notes

Acknowledgments

The authors are thankful to the editor and all the anonymous reviewers for their insightful comments and suggestions.

Funding Information

This work was partially supported by the National Natural Science Foundation of China (no. 21607092); the Public Technology Research Program of Zhejiang Province (no. 2017C33229); and the Talent Project of Qu Zhou University (no. XNZQN201506; BSJX201601).

References

  1. Adams, D. E. C., & Halden, R. U. (2010). Fluorinated chemicals and the impacts of anthropogenic use. Contaminants of Emerging Concern in the Environment: Ecological and Human Health Considerations, 1048, 539–560.Google Scholar
  2. Alexandrino, D. A. M., Ribeiro, I., Pinto, L. M., Cambra, R., Oliveira, R. S., Pereira, F., & Carvalho, M. F. (2018). Biodegradation of mono-, di- and trifluoroacetate by microbial cultures with different origins. New Biotechnology, 43, 23–29.CrossRefGoogle Scholar
  3. Alves, A. P. A., Lima, P. S., Dezotti, M., & Bassin, J. P. (2017). Impact of phenol shock loads on the performance of a combined activated sludge-moving bed biofilm reactor system. International Biodeterioration & Biodegradation, 123, 146–155.CrossRefGoogle Scholar
  4. Amorim, C. L., Carvalho, M. F., Afonso, C. M. M., & Castro, P. M. L. (2013). Biodegradation of fluoroanilines by the wild strain Labrys portucalensis. International Biodeterioration & Biodegradation, 80, 10–15.CrossRefGoogle Scholar
  5. APHA (American Public Health Association) (2005) Standard methods for the examination of water and waste water.Washington, USA.Google Scholar
  6. Bai, N. L., Abuduaini, R., Wang, S., Zhang, M. N., Zhu, X. F., & Zhao, Y. H. (2017). Nonylphenol biodegradation characterizations and bacterial composition analysis of an effective consortium NP-M2. Environmental Pollution, 220, 95–104.CrossRefGoogle Scholar
  7. Blanco-Enriquez, E. G., de la Serna, F. J. Z. D., Peralta-Perez, M. D., Ballinas-Casarrubias, L., Salmeron, I., Rubio-Arias, H., & &Rocha-Gutierrez, B.A. (2018). Characterization of a microbial consortium for the bioremoval of polycyclic aromatic hydrocarbons (PAHs) in water. International Journal of Environmental Research and Public Health, 15(5).Google Scholar
  8. Cai, B. J., Xie, L., Yang, D. H., & Arcangeli, J. P. (2010). Toxicity evaluation and prediction of toxic chemicals on activated sludge system. Journal of Hazardous Materials, 177(1-3), 414–419.CrossRefGoogle Scholar
  9. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Tumbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., & Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.CrossRefGoogle Scholar
  10. Carvalho, G., Marques, R., Lopes, A. R., Faria, C., Noronha, J. P., Oehmen, A., Nunes, O. C., & Reis, M. A. M. (2010). Biological treatment of propanil and 3,4-dichloroaniline: kinetic and microbiological characterisation. Water Research, 44(17), 4980–4991.CrossRefGoogle Scholar
  11. Chen, S. C., Peng, J. J., & Duan, G. L. (2016). Enrichment of functional microbes and genes during pyrene degradation in two different soils. Journal of Soils and Sediments, 16(2), 417–426.CrossRefGoogle Scholar
  12. Chen, X. J., Xu, Y., Fan, M. J., Chen, Y. W., & Shen, S. B. (2019). The stimulatory effect of humic acid on the co-metabolic biodegradation of tetrabromobisphenol A in bioelectrochemical system. Journal of Environmental Management, 235, 350–356.CrossRefGoogle Scholar
  13. Choi, M., Cho, K., Lee, S., Chung, Y. C., Park, J., & Bae, H. (2018). Effective seeding strategy using flat type poly (vinyl alcohol) cryogel for anammox enrichment. Chemosphere, 205, 88–97.CrossRefGoogle Scholar
  14. Chong, N. M., & Chen, Y. S. (2007). Activated sludge treatment of a xenobiotic with or without a biogenic substrate during start-up and shocks. Bioresource Technology, 98(18), 3611–3616.CrossRefGoogle Scholar
  15. Cortes-Tolalpa, L., Jimenez, D. J., Brossi, M. J. D., Salles, J. F., & van Elsas, J. D. (2016). Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Applied Microbiology and Biotechnology, 100(17), 7713–7725.CrossRefGoogle Scholar
  16. Cui, D. Z., Shen, D., Wu, C. R., Li, C., Leng, D. J., & Zhao, M. (2017). Biodegradation of aniline by a novel bacterial mixed culture AC. International Biodeterioration & Biodegradation, 125, 86–96.CrossRefGoogle Scholar
  17. Dionisi, D., Beccari, M., Di Gregorio, S., Majone, M., Papini, M. P., & Vallini, G. (2005). Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate. Journal of Chemical Technology and Biotechnology, 80(11), 1306–1318.CrossRefGoogle Scholar
  18. Duque, A. F., Hasan, S. A., Bessa, V. S., Carvalho, M. F., Samin, G., Janssen, D. B., & Castro, P. M. L. (2012). Isolation and characterization of a Rhodococcus strain able to degrade 2-fluorophenol. Applied Microbiology and Biotechnology, 95(2), 511–520.CrossRefGoogle Scholar
  19. Duque, A. F., Bessa, V. S., & Castro, P. M. L. (2014). Bacterial community dynamics in a rotating biological contactor treating 2-fluorophenol-containing wastewater. Journal of Industrial Microbiology & Biotechnology, 41(1), 97–104.CrossRefGoogle Scholar
  20. Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460–2461.CrossRefGoogle Scholar
  21. Franco, A. R., Ferreira, A. C., & Castro, P. M. L. (2014). Co-metabolic degradation of mono-fluorophenols by the ectomycorrhizal fungi Pisolithus tinctorius. Chemosphere, 111, 260–265.CrossRefGoogle Scholar
  22. Gui, X. F., Xu, W. C., Cao, H. B., Ning, P. G., Zhang, Y. X., Li, Y. P., & Sheng, Y. X. (2019). A novel phenol and ammonia recovery process for coal gasification wastewater altering the bacterial community and increasing pollutants removal in anaerobic/anoxic/aerobic system. Science of the Total Environment, 661, 203–211.CrossRefGoogle Scholar
  23. Hou, L. F., Wu, Q. P., Gu, Q. H., Zhou, Q., & Zhang, J. M. (2018). Community structure analysis and biodegradation potential of aniline-degrading bacteria in biofilters. Current Microbiology, 75(7), 918–924.CrossRefGoogle Scholar
  24. ISO (1998) ISO 11348-3 Water quality: determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)—part 3: method using freeze-dried bacteria. International Standardization Organization, Geneva(Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds).Google Scholar
  25. Jiang, Y., Wei, L., Yang, K., & Wang, H. Y. (2019). Investigation of rapid granulation in SBRs treating aniline-rich wastewater with different aniline loading rates. Science of the Total Environment, 646, 841–849.CrossRefGoogle Scholar
  26. Jiao, S., Chen, W. M., Wang, E. T., Wang, J. M., Liu, Z. S., Li, Y. N., & Wei, G. H. (2016). Microbial succession in response to pollutants in batch-enrichment culture. Scientific Reports, 6, 1–11.CrossRefGoogle Scholar
  27. Kiel, M., & Engesser, K. H. (2015). The biodegradation vs. biotransformation of fluorosubstituted aromatics. Applied Microbiology and Biotechnology, 99(18), 7433–7464.CrossRefGoogle Scholar
  28. Lepik, R., & Tenno, T. (2012). Determination of biodegradability of phenolic compounds, characteristic to wastewater of the oil-shale chemical industry, on activated sludge by oxygen uptake measurement. Environmental Technology, 33(3), 329–339.CrossRefGoogle Scholar
  29. Moreira, I. S., Amorim, C. L., Carvalho, M. F., & Castro, P. M. L. (2012). Degradation of difluorobenzenes by the wild strain Labrys portucalensis. Biodegradation, 23(5), 653–662.CrossRefGoogle Scholar
  30. Moreno, G., & Buitron, G. (2004). Influence of the origin of the inoculum and the acclimation strategy on the degradation of 4-chlorophenol. Bioresource Technology, 94(2), 215–218.CrossRefGoogle Scholar
  31. Movahedyan, H., Assadi, A., & Amin, M. M. (2008). Effects of 4-chlorophenol loadings on acclimation of biomass with optimized fixed time sequencing batch reactor. Iranian Journal of Environmental Health Science & Engineering, 5(4), 225–234.Google Scholar
  32. Nzila, A., Sankara, S., Al-Momani, M., & Musa, M. M. (2018). Isolation and characterisation of bacteria degrading polycyclic aromatic hydrocarbons: phenanthrene and anthracene. Archives of Environmental Protection, 44(2), 43–54.Google Scholar
  33. Orozco, A. M. F., Lobo, C. C., Contreras, E. M., & Zaritzky, N. E. (2013). Biodegradation of bisphenol-A (BPA) in activated sludge batch reactors: analysis of the acclimation process. International Biodeterioration & Biodegradation, 85, 392–399.CrossRefGoogle Scholar
  34. Osuna, M. B., Sipma, J., Emanuelsson, M. A. E., Carvalho, M. F., & Castro, P. M. L. (2008). Biodegradation of 2-fluorobenzoate and dichloromethane under simultaneous and sequential alternating pollutant feeding. Water Research, 42(14), 3857–3869.CrossRefGoogle Scholar
  35. Perez-Lara, L. F., Vargas-Suarez, M., Lopez-Castillo, N. N., Cruz-Gomez, M. J., & &Loza-Tavera, H. (2016). Preliminary study on the biodegradation of adipate/phthalate polyester polyurethanes of commercial-type by Alicycliphilus sp BQ8. Journal of Applied Polymer Science, 133(6).Google Scholar
  36. Polo, A. M., Tobajas, M., Sanchis, S., Mohedano, A. F., & Rodriguez, J. J. (2011). Comparison of experimental methods for determination of toxicity and biodegradability of xenobiotic compounds. Biodegradation, 22(4), 751–761.CrossRefGoogle Scholar
  37. Ramos, C., Amorim, C. L., Mesquita, D. P., Ferreira, E. C., Carrera, J., & Castro, P. M. L. (2017). Simultaneous partial nitrification and 2-fluorophenol biodegradation with aerobic granular biomass: Reactor performance and microbial communities. Bioresource Technology, 238, 232–240.CrossRefGoogle Scholar
  38. Rezouga, F., Hamdi, M., & Sperandio, M. (2009). Variability of kinetic parameters due to biomass acclimation: case of para-nitrophenol biodegradation. Bioresource Technology, 100(21), 5021–5029.CrossRefGoogle Scholar
  39. Singleton, D. R., Adrion, A. C., & Aitken, M. D. (2016). Surfactant-induced bacterial community changes correlated with increased polycyclic aromatic hydrocarbon degradation in contaminated soil. Applied Microbiology and Biotechnology, 100(23), 10165–10177.CrossRefGoogle Scholar
  40. Song, E. X., Wang, M. Z., & Shen, D. S. (2014). Isolation, identification and characterization of a novel Ralstonia sp FD-1, capable of degrading 4-fluoroaniline. Biodegradation, 25(1), 85–94.CrossRefGoogle Scholar
  41. Song, M., Zhang, L., Sun, B., Zhang, H., Ding, H., Li, Q., Guo, S. H., & Huang, X. (2015a). Ferrovibrio xuzhouensis sp nov., a cyhalothrin-degrading bacterium isolated from cyhalothrin contaminated wastewater. Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology, 108(2), 377–382.CrossRefGoogle Scholar
  42. Song, Z. W., Li, T., Wang, Q. X., Pan, Y., & Li, L. X. (2015b). Influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules. Journal of Environmental Sciences, 35, 144–150.CrossRefGoogle Scholar
  43. Song, J. X., Chen, L. J., Chen, H. D., Sheng, F. F., Xing, D. F., Li, L., Zhang, Y. M., & Rittmann, B. (2018). Characterization and high-throughput sequencing of a trichlorophenol-dechlorinating microbial community acclimated from sewage sludge. Journal of Cleaner Production, 197, 306–313.CrossRefGoogle Scholar
  44. Strunk, N., & Engesser, K. H. (2013). Degradation of fluorobenzene and its central metabolites 3-fluorocatechol and 2-fluoromuconate by Burkholderia fungorum FLU100. Applied Microbiology and Biotechnology, 97(12), 5605–5614.CrossRefGoogle Scholar
  45. Sun, W. M., Li, Y., McGuinness, L. R., Luo, S. A., Huang, W. L., Kerkhof, L. J., Mack, E. E., Haggblom, M. M., & Fennell, D. E. (2015). Identification of anaerobic aniline-degrading bacteria at a contaminated industrial site. Environmental Science & Technology, 49(18), 11079–11088.CrossRefGoogle Scholar
  46. Sun, Z. R., Zhang, J. W., Yang, J., Li, J. Y., Wang, J. G., & Hu, X. (2018). Acclimation of 2-chlorophenol-biodegrading activated sludge and microbial community analysis. Water Environment Research, 90(12), 2083–2089.CrossRefGoogle Scholar
  47. Van der Waals, M. J., Plugge, C., Meima-Franke, M., de Waard, P., Bodelier, P. L. E., Smidt, H., & Gerritse, J. (2019). Ethyl tert-butyl ether (EtBE) degradation by an algal-bacterial culture obtained from contaminated groundwater. Water Research, 148, 314–323.CrossRefGoogle Scholar
  48. Vasiliadou, I. A., Molina, R., Martinez, F., Melero, J. A., Stathopoulou, P. M., & Tsiamis, G. (2018). Toxicity assessment of pharmaceutical compounds on mixed culture from activated sludge using respirometric technique: The role of microbial community structure. Science of the Total Environment, 630, 809–819.CrossRefGoogle Scholar
  49. Vasquez, J., & Nakasaki, K. (2016). Effects of shock loading versus stepwise acclimation on microbial consortia during the anaerobic digestion of glycerol. Biomass & Bioenergy, 86, 129–135.CrossRefGoogle Scholar
  50. Wang, M. Z., Xu, J. J., Wang, J. H., Wang, S., Feng, H. J., Shentu, J. L., & Shen, D. S. (2013). Differences between 4-fluoroaniline degradation and autoinducer release by Acinetobacter sp TW: implications for operating conditions in bacterial bioaugmentation. Environmental Science and Pollution Research, 20(9), 6201–6209.CrossRefGoogle Scholar
  51. Wang, R. F., Chen, X. Y., & Yang, Q. X. (2018). Evolution of functional bacteria in a polycyclic aromatic hydrocarbon (PAH)-degrading bioreactor. Water Environment Research, 90(12), 2090–2099.CrossRefGoogle Scholar
  52. Wosman, A., Lu, Y. H., Sun, S. P., Liu, X., Wan, C. L., Zhang, Y., Lee, D. J., & Tay, J. (2016). Effect of operational strategies on activated sludge’s acclimation to phenol, subsequent aerobic granulation, and accumulation of polyhydoxyalkanoates. Journal of Hazardous Materials, 317, 221–228.CrossRefGoogle Scholar
  53. Yang, H., Yu, H. X., Hang, Q. G., Han, S. K., Wang, L. S., & Zhang, Z. (1997). Quantitative structure-toxicity relationships for fluorine-contained aromatics to Photobacterium phosphoreum. Chemosphere, 35(11), 2657–2663.CrossRefGoogle Scholar
  54. Zhao, Z. Q., Tian, B. H., Zhang, X., Ghulam, A., Zheng, T. C., & Shen, D. S. (2015). Aerobic degradation study of three fluoroanilines and microbial community analysis: the effects of increased fluorine substitution. Biodegradation, 26(1), 1–14.CrossRefGoogle Scholar
  55. Zhao, J. G., Li, Y. H., Chen, X. R., & Li, Y. (2018). Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresource Technology, 255, 22–28.CrossRefGoogle Scholar
  56. Zilouei, H., Soares, A., Murto, M., Guieysse, B., & Mattiasson, B. (2006). Influence of temperature on process efficiency and microbial community response during the biological removal of chlorophenols in a packed-bed bioreactor. Applied Microbiology and Biotechnology, 72(3), 591–599.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.College of Chemical & Material EngineeringQuzhou UniversityQuzhouPeople’s Republic of China
  2. 2.College of Environment & Resource SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Department of Chemical EngineeringUniversity of GujratGujratPakistan
  4. 4.Department of Mine, Metallurgy and Geology Engineering, Engineering DivisionUniversity of GuanajuatoGuanajuatoMexico

Personalised recommendations