Advertisement

Water, Air, & Soil Pollution

, 230:274 | Cite as

Applicability of Coal Bottom Ash from Thermoelectric Power Plant as an Alternative Heterogeneous Catalyst in Photo-Fenton Reaction

  • Fernanda Caroline Drumm
  • Patrícia Grassi
  • Aline Alexia Sulkovski
  • Dison Stracke Pfingsten Franco
  • Jordana Georgin
  • Guilherme Luiz DottoEmail author
  • Edson Luiz Foletto
  • Sérgio Luiz Jahn
Article
  • 40 Downloads

Abstract

In this work, coal bottom ash, a residue generated in thermoelectric power plant, was employed as an alternative catalyst in photo-Fenton reaction for the degradation of sunset yellow dye from liquid solution under visible irradiation. The residue was characterized by techniques such as XRD, XRF, N2 adsorption/desorption isotherms, SEM/EDS, and FT-IR. The influence of reaction parameters such as solution pH, catalyst dosage, and H2O2 concentration on dye removal was analyzed by a central composite rotatable design 23. According to the characterization results, the presence of iron in the material was confirmed by analysis of chemical composition by XRF, presenting 5.5 wt% in terms of iron oxide. Through the response surface methodology, it was possible to adjust the polynomial model and determine the optimum region of dye removal. The regression model was predictive and significant, with a coefficient of determination (R2) equivalent to 91%, showing a good fit between the experimental and theoretical values. The optimum region reaching a color removal of 91% has a pH level of 2.7, catalyst dosage of 0.9 g L−1, and H2O2 concentration of 10 mmol L−1. Therefore, coal bottom ash, an abundant residue with low cost, showed to be a potential catalyst in a photo-Fenton process for the removal of organic contaminant from liquid solution.

Keywords

Bottom ash Waste Photo-Fenton CCRD Decolorization Dye 

Notes

References

  1. Ahmed, Y., Yaakob, Z., & Akhtar, P. (2016). Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catalysis Science & Technology, 6, 1222–1232.CrossRefGoogle Scholar
  2. Alcântara, R. R., Izidoro, J. C., & Fungaro, D. A. (2015). Synthesis and characterization of surface modified zeolitic nanomaterial from coal fly ash. International Journal of Materials Chemistry and Physics, 1, 370–377.Google Scholar
  3. Anchieta, C. G., Severo, E. C., Rigo, C., Mazutti, M. A., Kuhn, R. C., Muller, E. I., Flores, E. M. M., Moreira, R. F. P. M., & Foletto, E. L. (2015). Rapid and facile preparation of zinc ferrite (ZnFe2O4) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction. Materials Chemistry and Physics, 160, 141–147.CrossRefGoogle Scholar
  4. Araujo, F. V. F., Yokoyama, L., Teixeira, L. A. C., & Campos, J. C. (2011). Heterogeneous Fenton process using the mineral hematite for the discolouration of a reactive dye solution. Brazilian Journal of Chemical Engineering, 28, 605–616.CrossRefGoogle Scholar
  5. Arslan-Alaton, I., Tureli, G., & Ölmez-Hanci, T. (2009). Treatment of azo dye production wastewaters using Photo-Fenton-like advanced oxidation processes: optimization by response surface methodology. Journal of Photochemistry and Photobiology A: Chemistry, 202, 142–153.CrossRefGoogle Scholar
  6. Ay, F., Catalkaya, E. C., & Kargi, F. (2009). A statistical experiment design approach for advanced oxidation of Direct Red azo-dye by photo-Fenton treatment. Journal of Hazardous Materials, 162, 230–236.CrossRefGoogle Scholar
  7. Azmi, N. H. M., Vadivelu, V. M., & Hameed, B. H. (2014). Iron-clay as a reusable heterogeneous Fentonlike catalyst for decolorization of Acid Green 25. Desalination and Water Treatment, 52, 5583–5593.CrossRefGoogle Scholar
  8. Bokare, A. D., & Choi, W. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.CrossRefGoogle Scholar
  9. Chang, S. H., Wang, K. S., Li, H. C., Wey, M. Y., & Chou, J. D. (2009). Enhancement of rhodamine B removal by low-cost fly ash sorption with Fenton pre-oxidation. Journal of Hazardous Materials, 172, 1131–1136.CrossRefGoogle Scholar
  10. CONAMA (Conselho Nacional de Meio Ambiente). (2011). Resolução n° 430 de 13 de maio de 2011. Brazil. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=646 (Accessed 05 Apr 2019).
  11. Costa, T. C., Soares, P. A., Campos, C. E. M., Souza, A. A. U., Dolic, M. B., Vilar, V. J. P., et al. (2019). Industrial steel waste as an iron source to promote heterogeneous and homogeneous oxidation/reduction reactions. Journal of Cleaner Production, 211, 804–817.CrossRefGoogle Scholar
  12. Depoi, F. S., Pozebon, D., & Kalkreuth, W. D. (2008). Chemical characterization of feed coals and combustion-by-products from Brazilian power plants. International Journal of Coal Geology, 76, 227–236.CrossRefGoogle Scholar
  13. Dias, F. F., Oliveira, A. A. S., Arcanjo, A. P., Moura, F. C. C., & Pacheco, J. G. A. (2016). Residue-based iron catalyst for the degradation of textile dye via heterogeneous photo-Fenton. Applied Catalysis B: Environmental, 186, 136–142.CrossRefGoogle Scholar
  14. Drumm, F. C., Oliveira, J. S., Foletto, E. L., Dotto, G. L., Flores, E. M. M., Enders, M. S. P., et al. (2018). Response surface methodology approach for the optimization of tartrazine removal by heterogeneous photo-Fenton process using mesostructured Fe2O3-suppoted ZSM-5 prepared by chitin-templating. Chemical Engineering Communications, 205, 445–455.CrossRefGoogle Scholar
  15. Duarte, J. L. S., Meili, L., Gomes, L. M., Soletti, J. I., & Zanta, C. L. P. S. (2019). Electrochemical process and Fenton reaction followed by lamellar settler to oil/surfactant effluent degradation. Journal of Water Process Engineering, 31, 100841.CrossRefGoogle Scholar
  16. Ersöz, G. (2014). Fenton-like oxidation of Reactive Black 5 using rice husk ash based catalyst. Applied Catalysis B: Environmental, 147, 353–358.CrossRefGoogle Scholar
  17. Jurado, L. T., Hernández, R. M. A., & Rocha-Rangel, E. (2013). Sol-gel synthesis of mullite starting from different inorganic precursors. Journal of Powder Technology, 2013, 1–7.CrossRefGoogle Scholar
  18. Kakavandi, B., Takdastan, A., Jaafarzadeh, N., Azizi, M., Mirzaei, A., & Azaric, A. (2016). Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method. Journal of Photochemistry and Photobiology A: Chemistry, 314, 178–188.CrossRefGoogle Scholar
  19. Lan, H., Wang, A., Liu, R., Liu, H., & Qua, J. (2015). Heterogeneous photo-Fenton degradation of acid red B over Fe2O3 supported on activated carbon fiber. Journal of Hazardous Materials, 285, 167–172.CrossRefGoogle Scholar
  20. Lee, Y. R., Soe, J. T., Zhang, S., Ahn, J. W., Park, M. B., & Ahn, W. S. (2017). Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: a mini review. Chemical Engineering Journal, 317, 821–843.CrossRefGoogle Scholar
  21. Lima, R. S., Zanta, C. L. P. S., Meili, L., Lins, P. V. S., Santos, G. E. S., & Tonholo, J. (2019). Fenton-based processes for the regeneration of biochar from Syagrus coronata biomass used as dye adsorbent. Desalination and Water Treatment, 162, 391–398.CrossRefGoogle Scholar
  22. Mazumder, N. A., & Rano, R. (2015). An efficient solid base catalyst from coal combustion fly ash for green synthesis of dibenzylideneacetone. Journal of Industrial and Engineering Chemistry, 29, 359–365.CrossRefGoogle Scholar
  23. More, S. R., Bhatt, D. V., & Menghani, J. V. (2018). Failure analysis of coal bottom ash slurry pipeline in thermal power plant. Engineering Failure Analysis, 90, 489–496.CrossRefGoogle Scholar
  24. Munoz, M., Pedro, Z. M., Casas, J. A., & Rodriguez, J. J. (2015). Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation—a review. Applied Catalysis B: Environmental, 176–177, 249–265.CrossRefGoogle Scholar
  25. Núñez, L., García-Hortal, J. A., & Torrades, F. (2014). Study of kinetic parameters related to the decolourization and mineralization of reactive dyes from textile dyeing using Fenton and photo-Fenton processes. Dyes and Pigments, 75, 647–652.CrossRefGoogle Scholar
  26. Oliveira, J. S., Drumm, F. C., Mazutti, M. A., Foletto, E. L., & Jahn, S. L. (2016). Preparation of Fe2O3/ZSM-5 system for use as catalyst in photo-Fenton reaction. Cerâmica, 62, 281–287.CrossRefGoogle Scholar
  27. Pedrolo, D. R. S., Quines, L. K. M., Souza, G., & Marcilio, N. R. (2017). Synthesis of zeolites from Brazilian coal ash and its application in SO2 adsorption. Journal of Environmental Chemical Engineering, 5, 4788–4794.CrossRefGoogle Scholar
  28. Pereira, M. C., Tavares, C. M., Fabris, J. D., Lago, R. M., Murad, E., & Criscuolo, P. S. (2007). Characterization of a tropical soil and a waste from kaolin mining and their suitability as heterogeneous catalysts for Fenton and Fenton-like reactions. Clay Minerals, 42, 299–306.CrossRefGoogle Scholar
  29. Rache, M. L., García, A. R., Zea, H. R., Silva, A. M. T., Madeira, L. M., & Ramirez, J. H. (2014). Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst–kinetics with a model based on the Fermi’s equation. Applied Catalysis B: Environmental, 146, 192–200.CrossRefGoogle Scholar
  30. Ramirez, J. H., Maldonado-Hodar, F. J., Pérez-Cadenas, A. F., Moreno-Castilla, C., Costa, C. A., & Madeira, L. M. (2007). Azo-dye Orange II degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied Catalysis B: Environmental, 75, 312–323.CrossRefGoogle Scholar
  31. Ramírez-Franco, H. J., Galeano, L. A., & Vicente, M. A. (2019). Fly ash as photo-Fenton catalyst for the degradation of amoxicillin. Journal of Environmental Chemical Engineering, 7, 103274.CrossRefGoogle Scholar
  32. Rendon, J. L. (1981). IR spectra of powder hematite: effects of particle size and shape. Clay Minerals, 16, 375–382.CrossRefGoogle Scholar
  33. Salla, J. S., Silvestri, S., Flores, E. M. M., & Foletto, E. L. (2018). A novel application of Cu2FeSnS4 particles prepared by solvothermal route as solar photo-Fenton catalyst. Materials Letters, 228, 160–163.CrossRefGoogle Scholar
  34. Schmachtenberg, N., Silvestri, S., Salla, J. S., Dotto, G. L., Hotza, D., Jahn, S. L., & Foletto, E. L. (2019). Preparation of delafossite–type CuFeO2 powders by conventional and microwave–assisted hydrothermal routes for use as photo–Fenton catalysts. Journal of Environmental Chemical Engineering, 7, 102954.CrossRefGoogle Scholar
  35. Severo, E. C., Anchieta, C. G., Foletto, V. S., Kuhn, R. C., Collazzo, G. C., Mazutti, M. A., et al. (2016). Degradation of Amaranth azo dye in water by heterogeneous photo-Fenton process using FeWO4 catalyst prepared by microwave irradiation. Water Science & Technology, 73, 88–94.CrossRefGoogle Scholar
  36. Silva, S. S., Chiavone-Filho, O., Neto, E. L. B., Mota, A. L., & Foletto, E. L. (2014). Photodegradation of non-ionic surfactant with different ethoxy groups in aqueous effluents by the photo-Fenton process. Environmental Technology, 35, 1556–1564.CrossRefGoogle Scholar
  37. Silva, S. S., Chiavone-Filho, O., Neto, E. L. B., & Foletto, E. L. (2015). Oil removal from produced water by conjugation of flotation and photo-Fenton processes. Journal of Environmental Management, 147, 257–263.CrossRefGoogle Scholar
  38. Thomas, M., Barbusiński, K., Kalemba, K., Piskorz, P. J., Kozik, V., & Bąk, A. (2017). Optimization of the Fenton oxidation of synthetic textile wastewater using response surface methodology. Fibres & Textiles in Eastern Europe, 25, 108–113.CrossRefGoogle Scholar
  39. Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry.  https://doi.org/10.1515/pac-2014-1117.CrossRefGoogle Scholar
  40. Wang, N., Zheng, T., Zhang, G., & Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4, 762–787.CrossRefGoogle Scholar
  41. Zhang, A., Wang, N., Zhou, J., Jiang, P., & Liu, G. (2012). Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash. Journal of Hazardous Materials, 201–202, 68–73.CrossRefGoogle Scholar
  42. Zhou, G., Chen, Z., Fang, F., He, Y., Sun, H., & Shi, H. (2015). Fenton-like degradation of methylene blue using paper mill sludge-derived magnetically separable heterogeneous catalyst: characterization and mechanism. Journal of Environmental Sciences, 35, 20–26.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Fernanda Caroline Drumm
    • 1
  • Patrícia Grassi
    • 1
  • Aline Alexia Sulkovski
    • 1
  • Dison Stracke Pfingsten Franco
    • 1
  • Jordana Georgin
    • 2
  • Guilherme Luiz Dotto
    • 1
    Email author
  • Edson Luiz Foletto
    • 1
  • Sérgio Luiz Jahn
    • 1
  1. 1.Graduate Program in Chemical EngineeringFederal University of Santa MariaSanta MariaBrazil
  2. 2.Graduate Program in Civil EngineeringFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations