Advertisement

Water, Air, & Soil Pollution

, 230:256 | Cite as

Start-up of the Simultaneous Nitrification, Anammox, and Denitrification (SNAD) Reactor and Efficacy of a Small Amount of Organic Carbon

  • Wei Liu
  • Allama Al Naim Bin NasryEmail author
  • Jianqiang ZhaoEmail author
  • Huexay Laoyongxay
  • Wei Dai
  • Qian Zhao
Article
  • 65 Downloads

Abstract

In perspective of the issue of how to begin simultaneous nitrification, anammox, and denitrification (SNAD) rapidly, the sequencing batch biofilm reactor (SBBR) was adopted to enrich ammonia-oxidizing bacteria (AOB) and anammox bacteria (AnAOB) rapidly and to inhibit nitrite-oxidizing bacteria (NOB) after three phases (67 days) of culture, and the impacts of different low carbon-nitrogen ratios (COD/N) on denitrification performance of the process were investigated. The results showed that preventing the accumulation of nitrite (NO2-N) was the key to start SNAD successfully. The removal efficiencies of ammonia nitrogen (NH4+-N) and total nitrogen (TN) in the system can reach more than 99% and 90%, respectively. Corresponding to COD/N = 0, 1 and 2, removal efficiencies of NH4+-N were 99.6%, 99.5%, and 98.5% respectively and removal efficiencies of TN were 93.8%, 97.2%, and 98.1%, respectively; the total nitrogen removal rate (TNRR) was greater than 0.29 kg N m−3 day−1. It indicates that the presence of a small amount of COD is beneficial to the denitrification of NO3-N without affecting the effect of simultaneous nitrification and anaerobic ammonium oxidation, which further improves the efficiency of nitrogen removal. High-throughput sequencing analysis showed that the ratios of AOB, AnAOB, and denitrifying bacteria were 7.3%, 20.1%, and 7.66%, respectively. Candidatus Kuenenia was the only genus of the SNAD reactor with anaerobic ammonium oxidation. AOB, Anammox, and heterotrophic denitrifying bacteria were present in the system, while ammonia oxidation and anaerobic ammonium oxidation played a dominant role in the denitrification process.

Keywords

SNAD Start-up Biofilm COD/N ratio Microbial communities 

Notes

Funding Information

This work was supported by the National Natural Scie7nce Foundation of China (Grant No. 51778057).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. APHA. (2005). Standard methods for the examination of water and wastewater, 21st ed. Washington, DC: American Public Health Association.Google Scholar
  2. Bagchi, S., Biswas, R., & Nandy, T. (2012). Autotrophic ammonia removal processes: ecology to technology. Critical Reviews in Environmental Science and Technology, 42(13), 1353–1418.CrossRefGoogle Scholar
  3. Ballinger, S. J., Head, I. M., Curtis, T. P., & Godley, A. R. (1998). Molecular microbial ecology of nitrification in an activated sludge process treating refinery wastewater. Water Science and Technology, 37(4–5), 105–108.CrossRefGoogle Scholar
  4. Chen, C., Sun, F., Zhang, H., Wang, J., Shen, Y., & Liang, X. (2016). Evaluation of COD effect on anammox process and microbial communities in the anaerobic baffled reactor (ABR). Bioresource Technology, 216(216), 571–578.CrossRefGoogle Scholar
  5. Dapena-Mora, A., Fernández, I., Campos, J. L., Mosquera-Corral, A., Méndez, R., & Jetten, M. S. M. (2007). Evaluation of activity and inhibition effects on anammox process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40(4), 859–865.CrossRefGoogle Scholar
  6. Daverey, A., Chen, Y. C., Dutta, K., Huang, Y. T., & Lin, J. G. (2015). Start-up of simultaneous partial nitrification, anammox and denitrification (SNAD) process in sequencing batch biofilm reactor using novel biomass carriers. Bioresource Technology, 190, 480–486.CrossRefGoogle Scholar
  7. Van de Vossenberg, J., Rattray, J. E., Kartal, B., van Niftrik, L., van Donselaar, E. G., Damste, J. S. S., Strous, M., & Jetten, M. S. M. (2008). Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environmental Microbiology, 10(11), 3120–3129.Google Scholar
  8. Du, R., Cao, S., Li, B., Niu, M., Wang, S., & Peng, Y. (2017). Performance and microbial community analysis of a novel deamox based on partial-denitrification and anammox treating ammonia and nitrate wastewaters. Water Research, 108, 46–56.CrossRefGoogle Scholar
  9. Fu, B., Liu, J., Gao, M., & Zhang, X. (2014). Progress in study on response of anammox bacterial species composition to environmental factors. Advances in Marine Science, 32(3), 427–434.Google Scholar
  10. Ge, G., Zhao, J., Chen, A., Hu, B., & Ding, X. (2018). Nitrogen removal and nitrous oxide emission in an anaerobic/oxic/anoxic sequencing biofilm batch reactor. Environmental Engineering Science, 35(1), 19–26.CrossRefGoogle Scholar
  11. Guven, D., Dapena, A., Kartal, B., Schmid, M. C., Maas, B., & Van, d. P. K. T. (2005). Propionate oxidation by and methanol inhibition of anaerobic ammonium-oxidizing bacteria. Applied and Environmental Microbiology, 71(2), 1066–1071.CrossRefGoogle Scholar
  12. Jaroszynski, L. W., Cicek, N., Sparling, R., & Oleszkiewicz, J. A. (2012). Impact of free ammonia on anammox rates (anoxic ammonium oxidation) in a moving bed biofilm reactor. Chemosphere, 88(2), 188–195.CrossRefGoogle Scholar
  13. Jetten, M. S. M., Strous, M., & van de Pas, S. K. T. (1999). The anaerobic oxidation of ammonium. FEMS Microbiology Reviews, 22(5), 421–437.CrossRefGoogle Scholar
  14. Kartal, B., Rattray, J., Niftrik, L. A. V., Vossenberg, J. V. D., Schmid, M. C., & Webb, R. I. (2007). Candidatus “anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Systematic & Applied Microbiology, 30(1), 39–49.CrossRefGoogle Scholar
  15. Kartal, B., van Niftrik, L., Rattray, J., de Vossenberg, J., Schmid, M. C., Sinninghe, D. J., Jetten, M., & Strous, M. (2008). Candidatus ‘brocodia fulgida’: an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiology Ecology, 63(1), 46–55.CrossRefGoogle Scholar
  16. Kawagoshi, Y., Nakamura, Y., Kawashima, H., Fujisaki, K., Fujimoto, A., & Furukawa, K. (2009). Enrichment culture of marine anaerobic ammonium oxidation (anammox) bacteria from sediment of sea-based waste disposal site. Journal of Bioscience and Bioengineering, 107(1), 61–63.CrossRefGoogle Scholar
  17. Lackner, S., Gilbert, E. M., Vlaeminck, S. E., Joss, A., Horn, H., & Van Loosdrecht, M. C. M. (2014). Full-scale partial nitritation/anammox experiences-an application survey. Water Research, 55, 292–303.CrossRefGoogle Scholar
  18. Lam, P., Lavik, G., Jensen, M. M., Van, d. V. J., Schmid, M., & Woebken, D. (2009). Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proceedings of the National Academy of Sciences, 106(12), 4752–4757.CrossRefGoogle Scholar
  19. Laureni, M., Falas, P., Robin, O., Wick, A., Weissbrodt, D. G., Nielsen, J. L., Ternes, T. A., Morgenroth, E., & Joss, A. (2016). Mainstream partial nitritation and anammox: long-term process stability and effluent quality at low temperatures. Water Research, 101, 628–639.CrossRefGoogle Scholar
  20. Liang, Y., Li, D., Zhang, X., Zeng, H., Yang, Z., & Zhang, J. (2014). Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. Bioresource Technology, 169, 103–109.CrossRefGoogle Scholar
  21. Ni, S. Q., Gao, B. Y., Wang, C. C., Lin, J. G., & Sung, S. (2011). Fast start-up, performance and microbial community in a pilot-scale anammox reactor seeded with exotic mature granules. Bioresource Technology, 102(3), 2448–2454.CrossRefGoogle Scholar
  22. Ni, S. Q., Ni, J. Y., Hu, D. L., & Sung, S. (2012). Effect of organic matter on the performance of granular anammox process. Bioresource Technology, 110, 701–705.CrossRefGoogle Scholar
  23. Penton, C. R., Devol, A. H., & Tiedje, J. M. (2006). Molecular evidence for the broad distribution of anaerobic ammonium-oxidizing bacteria in freshwater and marine sediments. Applied and Environmental Microbiology, 72(10), 6829–6832.CrossRefGoogle Scholar
  24. Qian, J., Zhang, M., Jing, R., Bai, L., Zhou, B., Zhao, M., Pei, X., Wei, L., & Chen, G.-H. (2019a). Thiosulfate as the electron acceptor in sulfur bioconversion-associated process (SBAP) for sewage treatment. Water Research.  https://doi.org/10.1016/j.watres.2019.07.017.CrossRefGoogle Scholar
  25. Qian, J., Zhang, M., Niu, J., Fu, X., Pei, X., Chang, X., Wei, L., Liu, R., Chen, G.-H., & Jiang, F. (2019b). Roles of sulfite and internal recirculation on organic compound removal and the microbial community structure of a sulfur cycle-driven biological wastewater treatment process. Chemosphere, 226, 825–833.CrossRefGoogle Scholar
  26. Rathnayake, R. M. L. D., Song, Y., Tumendelger, A., Oshiki, M., Ishii, S., & Satoh, H. (2013). Source identification of nitrous oxide on autotrophic partial nitrification in a granular sludge reactor. Water Research, 47(19), 7078–7086.CrossRefGoogle Scholar
  27. Sin, G., Kaelin, D., Kampschreur, M. J., Takács, I., & Loosdrecht, M. C. M. V. (2008). Modelling nitrite in wastewater treatment systems: a discussion of different modelling concepts. Water Science & Technology, 58(6), 1155–1171.CrossRefGoogle Scholar
  28. Strous, M., Fuerst, J. A., Kramer, E. H. M., Logemann, S., Muyzer, G., & Van, d. P. K. T. (1999a). Missing lithotroph identified as new planctomycete. Nature, 400(6743), 446–449.CrossRefGoogle Scholar
  29. Strous, M. M., Kuenen, J. G. J., & Jetten, M. S. M. (1999b). Key physiology of anaerobic ammonium oxidation. Applied and Environmental Microbiology, 65(7), 3248–3250.Google Scholar
  30. Suenaga, T., Aoyagi, R., Sakamoto, N., Riya, S., Ohashi, H., & Hosomi, M. (2018). Immobilization of azospira sp. strain I13 by gel entrapment for mitigation of N2O from biological wastewater treatment plants: biokinetic characterization and modeling. Journal of Bioscience and Bioengineering, 126(2), 213–219.CrossRefGoogle Scholar
  31. Vázquez-Padín, J. R., Fernández, I., Morales, N., Campos, J. L., Mosquera-Corral, A., & Méndez, R. (2011). Autotrophic nitrogen removal at low temperature. Water Science & Technology, 63(6), 1282.CrossRefGoogle Scholar
  32. Wang, T., Zhang, H., Gao, D., Yang, F., & Zhang, G. (2012). Comparison between MBR and SBR on anammox start-up process from the conventional activated sludge. Bioresource Technology, 122, 78–82.CrossRefGoogle Scholar
  33. Wang, C., Liu, S., Xu, X., Zhang, C., Wang, D., & Yang, F. (2018). Achieving mainstream nitrogen removal through simultaneous partial nitrification, anammox and denitrification process in an integrated fixed film activated sludge reactor. Chemosphere, 203, 457.CrossRefGoogle Scholar
  34. Zhang, Z., Chen, S., Wu, P., Lin, L., & Luo, H. (2010). Start-up of the canon process from activated sludge under salt stress in a sequencing batch biofilm reactor (SBBR). Bioresource Technology, 101(16), 6309–6314.CrossRefGoogle Scholar
  35. Zhang, X., Li, D., Liang, Y., He, Y., Zhang, Y., & Zhang, J. (2013). Autotrophic nitrogen removal from domestic sewage in MBR–CANON system and the biodiversity of functional microbes. Bioresource Technology, 150, 113–120.CrossRefGoogle Scholar
  36. Zheng, Z., Li, J., Ma, J., Du, J., Bian, W., Li, Y., Zhang, Y., & Zhao, B. (2016). Nitrogen removal via simultaneous partial nitrification, anammox and denitrification (SNAD) process under high DO condition. Biodegradation, 27(4–6), 195–208.CrossRefGoogle Scholar
  37. Zheng, Z., Huang, S., Bian, W., Liang, D., Wang, X., Zhang, K., Ma, X., & Li, J. (2019). Enhanced nitrogen removal of the simultaneous partial nitrification, anammox and denitrification (SNAD) biofilm reactor for treating mainstream wastewater under low dissolved oxygen (DO) concentration. Bioresource Technology, 283, 213–220.CrossRefGoogle Scholar
  38. Zou, Y., Xu, X., Wang, X., Yang, F., & Zhang, S. (2018). Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification (SNAD) process with a photobioreactor (PBR) for biomass production and generated dissolved oxygen (DO) recycling. Bioresource Technology, 268, 539–548.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Environmental Science and EngineeringChang’an UniversityXi’anChina
  2. 2.Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of EducationXi’anChina

Personalised recommendations