The Challenge of Making Wastewater Treatment Plants Composed by Anaerobic Reactors Capable of Removing Nitrogen
- 70 Downloads
Abstract
Both domestic and industrial effluent treatments contain or produce nitrogen loading during the treatment process. It is important to seek the removal of nitrogen while maintaining the design of existing systems, which are usually composed by the association of anaerobic and aerobic reactors. Thus, in this research, an anaerobic filter (AF) and an upflow anaerobic sludge blanket (UASB) reactors were fed with synthetic effluent enriched with nitrate to compare how these reactors would behave if they became denitrifying reactors. With the application of 100.0 mg NO3−-NL−1, the AF presented better efficiency. With respect to the biogas production, the composition was significantly altered: from CH4 and CO2 concentrations close to 70% and 13% without NO3N addition to N2 concentration higher than 85% with addition of 100.0 mg NO3−-NL−1. The UASB hydrodynamic profile was modified due to an increase in the mixing behavior along the denitrification stages by biogas production. This was not observed in the AF due to the presence of the support media, which was also responsible for ensuring a greater capacity to withstand denitrification without organic matter being carried out of the system.
Keywords
Nitrate Anaerobic reactor Denitrification Biogas Hydrodynamic DGGENotes
Acknowledgments
The authors would like to thank CNPq (Brazilian National Council for Scientific and Technological Development, process number 311275/2015-0) and FAPESP (São Paulo Research Foundation, process number 2017/07490-4) for financing this study. The authors would also like to acknowledge the service of the Writing Space/General Coordination of UNICAMP for helping translate the original manuscript.
References
- Aamir, S., Sutar, S., Singh, S. K., & Baghela, A. (2015). A rapid and efficient method of fungal genomic DNA extraction, suitable for PCR based molecular methods. Plant Pathology & Quarantine, 5(2), 74–81. https://doi.org/10.5943/ppq/5/2/6.CrossRefGoogle Scholar
- Al-Zreiqat, I., Abbassi, B., Headley, T., Nivala, J., van Afferden, M., & Müller, R. A. (2018). Influence of septic tank attached growth media on total nitrogen removal in a recirculating vertical flow constructed wetland for treatment of domestic wastewater. Ecological Engineering, 118, 171–178. https://doi.org/10.1016/J.ECOLENG.2018.05.013.CrossRefGoogle Scholar
- An, Y., Yang, F., Chua, H. C., Wong, F. S., & Wu, B. (2008). The integration of methanogenesis with shortcut nitrification and denitrification in a combined UASB with MBR. Bioresource Technology, 99(9), 3714–3720. https://doi.org/10.1016/J.BIORTECH.2007.07.020.CrossRefGoogle Scholar
- Andalib, M., Nakhla, G., McIntee, E., & Zhu, J. (2011). Simultaneous denitrification and methanogenesis (SDM): review of two decades of research. Desalination, 279(1–3), 1–14. https://doi.org/10.1016/J.DESAL.2011.06.018.CrossRefGoogle Scholar
- APHA, AWWA, & WEF. (2012). Standard methods for examination of water and wastewater (22nd ed.). Washington: American Public Health Association.Google Scholar
- Azevedo, L. S., Castro, I. M. P., Leal, C. D., Araújo, J. C., & Chernicharo, C. A. L. (2018). Performance and bacterial diversity of bioreactors used for simultaneous removal of sulfide, solids and organic matter from UASB reactor effluents. Water Science and Technology, 78(6), 1312–1323. https://doi.org/10.2166/wst.2018.403.CrossRefGoogle Scholar
- Browner, C. M., Fox, A. J. C., Grubbs, G. H., Rubin, M., Barash, S. Z., Ebner, M. C., & Tudor, L. (2000). Development document for the proposed effluent limitations guidelines and standards for the metal products & Machinery Point Source Category.Google Scholar
- Chang, D., Seo, S. C., & Hong, K. H. (2004). Pre Denitri. and post nitri in Adv Ww treat.Pdf. Journal of Industrial and Engineering Chemistry, 10(3), 354–360.Google Scholar
- Chernicharo, C. A. L. (2007). Anaerobic reactors. IWA Publishing.Google Scholar
- Chernicharo, C. A. L., van Lier, J. B., Noyola, A., & Bressani Ribeiro, T. (2015). Anaerobic sewage treatment: state of the art, constraints and challenges. Reviews in Environmental Science and Bio/Technology, 14(4), 649–679. https://doi.org/10.1007/s11157-015-9377-3.CrossRefGoogle Scholar
- Council Directive 91/271/EEC. (1991). Council directive 91/271/EEC of 21 May 1991 concerning urban waste water treatment, The Council of the European Communities.Google Scholar
- Cruz, L., Stefanutti, R., Coraucci Filho, B., & Tonetti, A. (2013). Coconut shells as filling material for anaerobic filters. SpringerPlus, 2(1), 655. https://doi.org/10.1186/2193-1801-2-655.CrossRefGoogle Scholar
- Eiroa, M., Kennes, C., & Veiga, M. C. (2004). Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor. Water Research, 38(16), 3495–3502. https://doi.org/10.1016/J.WATRES.2004.04.055.CrossRefGoogle Scholar
- Ersahin, M. E., Ozgun, H., Dereli, R. K., & Ozturk, I. (2011). Anaerobic treatment of industrial effluents: an overview of applications. In Waste water-treatment and reutilization. InTech.Google Scholar
- Fang, H. H. P. (2010). Environmental anaerobic technology: applications and new developments. Imperial College Press.Google Scholar
- Gavrilescu, M., & Macoveanu, M. (2000). Attached-growth process engineering in wastewater treatment. Bioprocess Engineering, 23(1), 95–106. https://doi.org/10.1007/s004490050030.CrossRefGoogle Scholar
- Han, Y., Liu, J., Guo, X., & Li, L. (2012). Micro-environment characteristics and microbial communities in activated sludge flocs of different particle size. Bioresource Technology, 124, 252–258. https://doi.org/10.1016/J.BIORTECH.2012.08.008.CrossRefGoogle Scholar
- Hanaki, K., & Polprasert, C. (1989). Contribution of methanogenesis to denitrification with an upflow filter. Research Journal of the Water Pollution Control Federation. https://doi.org/10.2307/25043777.
- Hug, L. A., Castelle, C. J., Wrighton, K. C., Thomas, B. C., Sharon, I., Frischkorn, K. R., et al. (2013). Community genomic analyses constrain the distribution of metabolic traits across the Chloroflexi phylum and indicate roles in sediment carbon cycling. Microbiome, 1(1), 22. https://doi.org/10.1186/2049-2618-1-22.CrossRefGoogle Scholar
- Jin, B., & Lant, P. (2004). Flow regime, hydrodynamics, floc size distribution and sludge properties in activated sludge bubble column, air-lift and aerated stirred reactors. Chemical Engineering Science, 59(12), 2379–2388. https://doi.org/10.1016/J.CES.2004.01.061.CrossRefGoogle Scholar
- Jin, X., Wang, F., Liu, G., & Yan, N. (2012). A key cultivation technology for denitrifying granular sludge. Process Biochemistry, 47(7), 1122–1128. https://doi.org/10.1016/J.PROCBIO.2012.04.001.CrossRefGoogle Scholar
- Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2009). Nitrous oxide emission during wastewater treatment. Water Research, 43(17), 4093–4103. https://doi.org/10.1016/J.WATRES.2009.03.001.CrossRefGoogle Scholar
- Khan, S. J., Ilyas, S., Javid, S., Visvanathan, C., & Jegatheesan, V. (2011). Performance of suspended and attached growth MBR systems in treating high strength synthetic wastewater. Bioresource Technology, 102(9), 5331–5336. https://doi.org/10.1016/J.BIORTECH.2010.09.100.CrossRefGoogle Scholar
- Klas, S., Mozes, N., & Lahav, O. (2006). A conceptual, stoichiometry-based model for single-sludge denitrification in recirculating aquaculture systems. Aquaculture, 259(1–4), 328–341. https://doi.org/10.1016/J.AQUACULTURE.2006.05.048.CrossRefGoogle Scholar
- Kodera, T., Akizuki, S., & Toda, T. (2017). Formation of simultaneous denitrification and methanogenesis granules in biological wastewater treatment. Process Biochemistry, 58, 252–257. https://doi.org/10.1016/J.PROCBIO.2017.04.038.CrossRefGoogle Scholar
- Kreft, P., Scheible, O. K., & Venosa, A. (1986). Hydraulic studies and cleaning evaluations of ultraviolet disinfection units. Journal (Water Pollution Control Federation). https://doi.org/10.2307/25043146.
- Leal, C. D., Pereira, A. D., Nunes, F. T., Ferreira, L. O., Coelho, A. C. C., Bicalho, S. K., et al. (2016). Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater: Effect of COD/N ratios on process performance and bacterial community structure. Bioresource Technology, 211, 257–266. https://doi.org/10.1016/J.BIORTECH.2016.03.107.CrossRefGoogle Scholar
- Levenspiel, O. (1999). Chemical reaction engineering. Industrial & Engineering Chemistry Research, 38(11), 4140–4143.CrossRefGoogle Scholar
- Leverenz, H. L., Haunschild, K., Hopes, G., Tchobanoglous, G., & Darby, J. L. (2010). Anoxic treatment wetlands for denitrification. Ecological Engineering, 36(11), 1544–1551. https://doi.org/10.1016/J.ECOLENG.2010.03.014.CrossRefGoogle Scholar
- Lim, S. J., & Fox, P. (2011). A kinetic analysis and experimental validation of an integrated system of anaerobic filter and biological aerated filter. Bioresource Technology, 102(22), 10371–10376. https://doi.org/10.1016/J.BIORTECH.2011.09.005.CrossRefGoogle Scholar
- Lu, H., Chandran, K., & Stensel, D. (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Research, 64, 237–254. https://doi.org/10.1016/J.WATRES.2014.06.042.CrossRefGoogle Scholar
- Mac Conell, E. F. A., Almeida, P. G. S., Martins, K. E. L., Araújo, J. C., & Chernicharo, C. A. L. (2015). Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent. Water Science & Technology, 72(1), 116. https://doi.org/10.2166/wst.2015.154.CrossRefGoogle Scholar
- Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. https://doi.org/10.1016/J.RSER.2015.02.032.CrossRefGoogle Scholar
- Mateo-Sagasta Dávila, J., Khassab, G., Klapwijk, A., & van Lier, J. B. (2009). Combination of methanogenesis and denitrification in a UASB reactor for water reclamation applied to small agglomerations. Desalination and Water Treatment, 4(1–3), 177–182. https://doi.org/10.5004/dwt.2009.373.CrossRefGoogle Scholar
- Méndez-Romero, D. C., López-López, A., Vallejo-Rodríguez, R., & León-Becerril, E. (2011). Hydrodynamic and kinetic assessment of an anaerobic fixed-bed reactor for slaughterhouse wastewater treatment. Chemical Engineering and Processing: Process Intensification, 50(3), 273–280. https://doi.org/10.1016/J.CEP.2011.02.002.CrossRefGoogle Scholar
- Muyzer, G., de Waal, E. C., & Uitterlinden, A. G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 59(3), 695–700.Google Scholar
- Muyzer, G. T., Brinkhoff, U., Nübel, C., Santegoeds, H., & Schäfer, C. (1997). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. Molecular Microbial Ecology Manual, Kluwer Academics Publishers. Dordrecht, The Netherlands, 1–27.Google Scholar
- Niu, W., Guo, J., Lian, J., Ngo, H. H., Li, H., Song, Y., et al. (2018). Effect of fluctuating hydraulic retention time (HRT) on denitrification in the UASB reactors. Biochemical Engineering Journal, 132, 29–37. https://doi.org/10.1016/J.BEJ.2017.12.017.CrossRefGoogle Scholar
- Noyola, A., Padilla-Rivera, A., Morgan-Sagastume, J. M., Güereca, L. P., & Hernández-Padilla, F. (2012). Typology of municipal wastewater treatment technologies in Latin America. CLEAN - Soil, Air, Water, 40(9), 926–932. https://doi.org/10.1002/clen.201100707.CrossRefGoogle Scholar
- Pagáčová, P., Galbová, K., Drtil, M., & Jonatová, I. (2010). Denitrification in USB reactor with granulated biomass. Bioresource Technology, 101(1), 150–156. https://doi.org/10.1016/J.BIORTECH.2009.08.021.CrossRefGoogle Scholar
- Parawira, W., Murto, M., Zvauya, R., & Mattiasson, B. (2006). Comparative performance of a UASB reactor and an anaerobic packed-bed reactor when treating potato waste leachate. Renewable Energy, 31(6), 893–903. https://doi.org/10.1016/J.RENENE.2005.05.013.CrossRefGoogle Scholar
- Peña, M. R., Mara, D. D., & Avella, G. P. (2006). Dispersion and treatment performance analysis of an UASB reactor under different hydraulic loading rates. Water Research, 40(3), 445–452. https://doi.org/10.1016/J.WATRES.2005.11.021.CrossRefGoogle Scholar
- Perry, J. H. (1950). Chemical engineers’ handbook. ACS Publications.Google Scholar
- Polprasert, C., & Park, H. S. (1986). Effluent denitrification with anaerobic filters. Water Research, 20(8), 1015–1021. https://doi.org/10.1016/0043-1354(86)90044-8.CrossRefGoogle Scholar
- Quaff, A. R., & Guha, S. (2011). Evaluation of mixing and performance of lab-scale upflow anaerobic sludge blanket reactors treating domestic wastewater. Journal of Environmental Engineering, 137(5), 322–331. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000333.CrossRefGoogle Scholar
- Renuka, R., Mariraj Mohan, S., & Amal Raj, S. (2016). Hydrodynamic behaviour and its effects on the treatment performance of panelled anaerobic baffle-cum filter reactor. International journal of Environmental Science and Technology, 13(1), 307–318. https://doi.org/10.1007/s13762-015-0824-z.CrossRefGoogle Scholar
- Robarge, W. P., Edwards, A., & Johnson, B. (1983). Water and waste water analysis for nitrate via nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 14(12), 1207–1215. https://doi.org/10.1080/00103628309367444.CrossRefGoogle Scholar
- Rosa, A. P., Conesa, J. A., Fullana, A., Melo, G. C. B., Borges, J. M., & Chernicharo, C. A. L. (2016). Energy potential and alternative usages of biogas and sludge from UASB reactors: case study of the Laboreaux wastewater treatment plant. Water Science and Technology, 73(7), 1680–1690. https://doi.org/10.2166/wst.2015.643.CrossRefGoogle Scholar
- Rosa, A. P., Chernicharo, C. A. L., Lobato, L. C. S., Silva, R. V., Padilha, R. F., & Borges, J. M. (2018). Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renewable Energy, 124, 21–26. https://doi.org/10.1016/J.RENENE.2017.09.025.CrossRefGoogle Scholar
- Saliba, P. D., & Von Sperling, M. (2017). Performance evaluation of a large sewage treatment plant in Brazil, consisting of an upflow anaerobic sludge blanket reactor followed by activated sludge. Water Science and Technology, 76(8), 2003–2014. https://doi.org/10.2166/wst.2017.284.CrossRefGoogle Scholar
- Saliling, W. J. B., Westerman, P. W., & Losordo, T. M. (2007). Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations. Aquacultural Engineering, 37(3), 222–233. https://doi.org/10.1016/J.AQUAENG.2007.06.003.CrossRefGoogle Scholar
- Sánchez, E., Milán, Z., Borja, R., Weiland, P., & Rodriguez, X. (1995). Piggery waste treatment by anaerobic digestion and nutrient removal by ionic exchange. Resources, Conservation and Recycling, 15(3–4), 235–244. https://doi.org/10.1016/0921-3449(95)00033-X.CrossRefGoogle Scholar
- Shen, Z., Zhou, Y., Hu, J., & Wang, J. (2013). Denitrification performance and microbial diversity in a packed-bed bioreactor using biodegradable polymer as carbon source and biofilm support. Journal of Hazardous Materials, 250–251, 431–438. https://doi.org/10.1016/J.JHAZMAT.2013.02.026.CrossRefGoogle Scholar
- Show, K.-Y., & Tay, J.-H. (1999). Influence of support media on biomass growth and retention in anaerobic filters. Water Research, 33(6), 1471–1481. https://doi.org/10.1016/S0043-1354(98)00352-2.CrossRefGoogle Scholar
- Silva, J. C. P., Tonetti, A. L., Leonel, L. P., & Costa, A. (2015). Denitrification on upflow-anaerobic filter filled with coconut shells (Cocos nucifera). Ecological Engineering, 82, 474–479. https://doi.org/10.1016/J.ECOLENG.2015.05.007. https://www.sciencedirect.com/science/article/pii/S0925857415300392?via%3Dihub CrossRefGoogle Scholar
- Singh, N. K., Kazmi, A. A., & Starkl, M. (2015). A review on full-scale decentralized wastewater treatment systems: techno-economical approach. Water Science and Technology, 71(4), 468–478. https://doi.org/10.2166/wst.2014.413.CrossRefGoogle Scholar
- Souza, C. L., Chernicharo, C. A. L., & Aquino, S. F. (2011). Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Science and Technology, 64(11), 2259–2264. https://doi.org/10.2166/wst.2011.695.CrossRefGoogle Scholar
- Stazi, V., & Tomei, M. C. (2018). Enhancing anaerobic treatment of domestic wastewater: state of the art, innovative technologies and future perspectives. Science of the Total Environment, 635, 78–91. https://doi.org/10.1016/J.SCITOTENV.2018.04.071.CrossRefGoogle Scholar
- Tchobanoglous, G., & Schroeder, E. E. (1985). Water quality: characteristics, modeling, modification. Reading: Addison-Wesley Pub. Co. https://www.osti.gov/biblio/5887635. Accessed 11 March 2019.Google Scholar
- Tchobanoglous, G., Burton, F. L., Stensel, H. D., et. al. (2003). Metcalf & Eddy wastewater engineering: treatment and reuse. International Edition. McGrawHill, 4, 361–411.Google Scholar
- Tonetti, A. L., Coraucci Filho, B., Bertoncini, E. I., Oliveira, R. A., & Stefanutti, R. (2010). Avaliação de um sistema simplificado de tratamento de esgotos visando a utilização em áreas rurais. Revista Brasileira de Engenharia Agrícola e Ambiental, 14(2), 227–234. https://doi.org/10.1590/S1415-43662010000200015.CrossRefGoogle Scholar
- Tonetti, A. L., Coraucci Filho, B., Guimarães, J. R., Fadini, P. S., & Nicolau, C. E. (2013). Desnitrificação em um sistema simplificado de tratamento de esgoto. Engenharia Sanitaria e Ambiental, 18(4), 381–392. https://doi.org/10.1590/S1413-41522013000400010.CrossRefGoogle Scholar
- USEPA. (2009). Nutrient control design manual: State of technology review report.Google Scholar
- Haandel, A. C. van, & Lettinga, G. (1994). Anaerobic sewage treatment: a practical guide for regions with a hot climate. Anaerobic sewage treatment: a practical guide for regions with a hot climate.Google Scholar
- Von Sperling, M., & Chernicharo, C. A. L. (2005). Biological wastewater treatment in warm climate regions. IWA.Google Scholar
- Wunderlin, P., Mohn, J., Joss, A., Emmenegger, L., & Siegrist, H. (2012). Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions. Water Research, 46(4), 1027–1037. https://doi.org/10.1016/J.WATRES.2011.11.080.CrossRefGoogle Scholar
- Xue, Y., Guo, J., Lian, J., Zhang, Y., Zhang, C., & Zhao, Y. (2016). Effects of a higher hydraulic shear force on denitrification granulation in upflow anoxic sludge blanket reactors. Biochemical Engineering Journal, 105, 136–143. https://doi.org/10.1016/J.BEJ.2015.09.010.CrossRefGoogle Scholar
- Zhao, L., Guo, J., Lian, J., Guo, Y., Yue, L., Gou, C., et al. (2015). Study of the dynamics and material transformation characteristics of nitrite denitrification in UASB. Biotechnology & Biotechnological Equipment, 29(5), 907–914. https://doi.org/10.1080/13102818.2015.1050789.CrossRefGoogle Scholar
- Zheng, M. X., Wang, K. J., Zuo, J. E., Yan, Z., Fang, H., & Yu, J. W. (2012). Flow pattern analysis of a full-scale expanded granular sludge bed-type reactor under different organic loading rates. Bioresource Technology, 107, 33–40. https://doi.org/10.1016/J.BIORTECH.2011.11.102.CrossRefGoogle Scholar