Water, Air, & Soil Pollution

, 230:240 | Cite as

Modřice Plant Anaerobic Digester: Microbial Distribution and Biogas Production

  • Martin StrukEmail author
  • Monika Vítězová
  • Tomáš Vítěz
  • Milan Bartoš
  • Ivan KushkevychEmail author


Biogas reactors are now a common part of wastewater treatment systems. The quality of produced biogas is the result of many factors, mainly the input substrate and microbial composition of the bioreactor. The aim of this research was to evaluate the microbial community of the Modřice biogas reactor together with the possible changes in biogas composition. The key microbial groups and their content in anaerobic digester were identified by sequencing techniques. The most dominant group were sulphate-reducing (45%), followed by methanogenic (19%), acetate (6%) and hydrogen-producing (11%) microorganisms. The remaining microorganisms were identified only to their order (19%). Phylogenetic trees were constructed to show evolutionary relationships of detected microorganisms. The volume of methane in biogas content was 60%, which corresponds with literature data regarding sewage digesters. None of the detected impurities have crossed the safe limits and their volume remained stable during the measurement period. Despite sulphate-reducing bacteria being the dominant group, their produced hydrogen sulphide (H2S) was detected only in a small quantity (2.43–7.46 ppm) and had no inhibitory effect on the methane production. The mechanism of inhibition by H2S and the perspective of its biological removal were discussed. Application of phototrophic sulphur bacteria, especially Chlorobiaceae and Chromatiaceae family, and the creation of new photobioreactor systems can be a promising pathway for hydrogen sulphide treatment in biogas plants.


Bioreactor Methanogens Microbial community Hydrogen sulphide Anoxygenic phototrophs 


Funding Information

This study was supported by a grant agency of Masaryk University (MUNI/A/0902/2018).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.


  1. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389–3402.Google Scholar
  2. Barton, L. L., & Hamilton, W. A. (Eds.). (2007). Sulphate-reducing bacteria (1st ed.). Cambridge: Cambridge University Press.Google Scholar
  3. Boone, D. R., Castenholz, R. W., & Garrity, G. M. (2012). Bergey’s manual of systematic bacteriology (2nd ed.). New York: Springer.Google Scholar
  4. Bryant, M. P. (1979). Microbial methane production—theoretical aspects 2. Journal of Animal Science, 48(1), 193–201.Google Scholar
  5. Buisman, C., Post, R., Ijspeert, P., Geraats, G., & Lettinga, G. (1989). Biotechnological process for sulphide removal with sulphur reclamation. Acta Biotechnologica, 9(3), 255–267.Google Scholar
  6. Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336.Google Scholar
  7. Černý, M., Vítězová, M., Vítěz, T., Bartoš, M., & Kushkevych, I. (2018). Variation in the distribution of hydrogen producers from the Clostridiales order in biogas reactors depending on different input substrates. Energies, 11(12).Google Scholar
  8. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.Google Scholar
  9. Colleran, E., Finnegan, S., & Lens, P. (1995). Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek, 67(1), 29–46.Google Scholar
  10. Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology, 28(3), 193–202.Google Scholar
  11. Copeland, A., Spring, S., Göker, M., Schneider, S., Lapidus, A., Del Rio, T. G., et al. (2009). Complete genome sequence of Desulfomicrobium baculatum type strain (XT). Standards in Genomic Sciences, 1(1), 29–37.Google Scholar
  12. CSN EN 121761 Characterization of sludge—determination of pH-value. (1999). Prague: Czech Standards Institute.Google Scholar
  13. CSN EN 14346 Characterization of waste—calculation of dry matter by determination of dry residue or water content. (2007). Prague: Czech Standards Institute.Google Scholar
  14. CSN EN 15169 Characterization of waste—determination of loss on ignition in waste, sludge and sediments. (2007). Prague: Czech Standards Institute.Google Scholar
  15. Dahl, C., Hell, R., Leustek, T., & Knaff, D. (2008). Introduction to sulfur metabolism in phototrophic organisms. In Sulfur metabolism in phototrophic organisms (pp. 1–14). Dordrecht: Springer.Google Scholar
  16. Demirel, B., & Scherer, P. (2008). The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Reviews in Environmental Science and Bio/Technology, 7(2), 173–190.Google Scholar
  17. Edgar, R. C. (2004). MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5(1), 113–113.Google Scholar
  18. Flörke, M., Kynast, E., Bärlund, I., Eisner, S., Wimmer, F., & Alcamo, J. (2013). Domestic and industrial water uses of the past 60 years as a mirror of socio-economic development: a global simulation study. Global Environmental Change, 23(1), 144–156.Google Scholar
  19. Fotidis, I. A., Karakashev, D., & Angelidaki, I. (2013). Bioaugmentation with an acetate-oxidising consortium as a tool to tackle ammonia inhibition of anaerobic digestion. Bioresource Technology, 146, 57–62.Google Scholar
  20. Gabriel, D., & Deshusses, M. A. (2003). Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proceedings of the National Academy of Sciences, 100(11), 6308–6312.Google Scholar
  21. Hansen, T. A. (1993). Carbon metabolism of sulfate-reducing bacteria. In The sulfate-reducing bacteria: contemporary perspectives (pp. 21–40). New York: Springer.Google Scholar
  22. Henshaw, P. (2001). Biological conversion of hydrogen sulphide to elemental sulphur in a fixed-film continuous flow photo-reactor. Water Research, 35(15), 3605–3610.Google Scholar
  23. Henshaw, P., Medlar, D., & McEwen, J. (1999). Selection of a support medium for a fixed-film green sulphur bacteria reactor. Water Research, 33(14), 3107–3110.Google Scholar
  24. Hobson, P. N. (1982). Biogas production from agricultural wastes. Experientia, 38(2), 206–209.Google Scholar
  25. Hurse, T. J., Kappler, U., & Keller, J. (2008). Using anoxygenic photosynthetic bacteria for the removal of sulfide from wastewater. In Sulfur metabolism in phototrophic organisms (pp. 437–460). Dordrecht: Springer.Google Scholar
  26. Imachi, H., & Sakai, S. (2015). Methanolinea. In Bergey’s manual of systematics of archaea and bacteria (pp. 1–4). Chichester: Wiley.Google Scholar
  27. Imhoff, J. F. (2008). Systematics of anoxygenic phototrophic bacteria. In Sulfur metabolism in phototrophic organisms (pp. 269–287). Dordrecht: Springer.Google Scholar
  28. Imhoff, J. F. (2014a). The family Chlorobiaceae. In The prokaryotes (4 ed., pp. 501–514). Berlin: Springer.Google Scholar
  29. Imhoff, J. F. (2014b). The family Chromatiaceae. In The prokaryotes (pp. 151–178). Berlin: Springer.Google Scholar
  30. Imhoff, J. F. (2015). Chromatiaceae. In Bergey’s manual of systematics of archaea and bacteria (pp. 1–12). Chichester: Wiley.Google Scholar
  31. Kim, B. W., & Chang, H. N. (1991). Removal of hydrogen sulfide by Chlorobium thiosulfatophilum in immobilized-cell and sulfur-settling free-cell recycle reactors. Biotechnology Progress, 7(6), 495–500.Google Scholar
  32. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2), 111–120.Google Scholar
  33. Klok, J. B. M., de Graaff, M., van den Bosch, P. L. F., Boelee, N. C., Keesman, K. J., & Janssen, A. J. H. (2013). A physiologically based kinetic model for bacterial sulfide oxidation. Water Research, 47(2), 483–492.Google Scholar
  34. Kobayashi, H. A., Stenstrom, M., & Mah, R. A. (1983). Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Water Research, 17(5), 579–587.Google Scholar
  35. Koeck, D. E., Hahnke, S., & Zverlov, V. V. (2016). Herbinix luporum sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. International Journal of Systematic and Evolutionary Microbiology, 66(10), 4132–4137.Google Scholar
  36. Koschorreck, M. (2008). Microbial sulphate reduction at a low pH. FEMS Microbiology Ecology, 64(3), 329–342.Google Scholar
  37. Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K., & Battistuzzi, F. U. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.Google Scholar
  38. Kushkevych, I., Vítězová, M., Vítěz, T., & Bartoš, M. (2017). Production of biogas: relationship between methanogenic and sulfate-reducing microorganisms. Open Life Sciences, 12(1), 82–91.Google Scholar
  39. Kushkevych, I., Vítězová, M., Vítěz, T., Kováč, J., Kaucká, P., Jesionek, W., et al. (2018a). A new combination of substrates: biogas production and diversity of the methanogenic microorganisms. Open Life Sciences, 13(1), 119–128.Google Scholar
  40. Kushkevych, I., Kováč, J., Vítězová, M., Vítěz, T., & Bartoš, M. (2018b). The diversity of sulfate-reducing bacteria in the seven bioreactors. Archives of Microbiology, 200(6), 945–950.Google Scholar
  41. Kushkevych, I., Dordević, D., & Vítězová, M. (2019a). Toxicity of hydrogen sulfide toward sulfate-reducing bacteria Desulfovibrio piger Vib-7. Archives of Microbiology, 201(3), 389–397.Google Scholar
  42. Kushkevych, I., Kobzová, E., Vítězová, M., Vítěz, T., Dordević, D., & Bartoš, M. (2019b). Acetogenic microorganisms in operating biogas plants depending on substrate combinations. Biologia, 74, 1–8.Google Scholar
  43. Laanbroek, H. J., Geerligs, H. J., Sijtsma, L., & Veldkamp, H. (1984). Competition for sulfate and ethanol among Desulfobacter, Desulfobulbus, and Desulfovibrio species isolated from intertidal sediments. Applied and Environmental Microbiology, 47(2), 329.Google Scholar
  44. Laws, E. A. (2017). Aquatic pollution: an introductory text (4th ed.). Hoboken: Wiley.Google Scholar
  45. Lin, S., Mackey, H. R., Hao, T., Guo, G., van Loosdrecht, M. C. M., & Chen, G. (2018). Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities. Water Research, 143, 399–415.Google Scholar
  46. Manzoor, S., Schnürer, A., Bongcam-Rudloff, E., & Müller, B. (2016). Complete genome sequence of Methanoculleus bourgensis strain MAB1, the syntrophic partner of mesophilic acetate-oxidising bacteria (SAOB). Standards in Genomic Sciences, 11(1).Google Scholar
  47. McCartney, D. M., & Oleszkiewicz, J. A. (1993). Competition between methanogens and sulfate reducers: effect of COD. Water Environment Research, 65(5), 655–664.Google Scholar
  48. Muyzer, G., & Stams, A. J. M. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441–454.Google Scholar
  49. Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597.Google Scholar
  50. Nath, K., & Das, D. (2004). Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology, 65(5).Google Scholar
  51. Nossa, C. W. (2010). Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World Journal of Gastroenterology, 16(33).Google Scholar
  52. Oren, A. (2014). The family Methanospirillaceae. In The prokaryotes (pp. 283–290). Berlin: Springer.Google Scholar
  53. Oyarzún, P., Arancibia, F., Canales, C., & Aroca, G. E. (2003). Biofiltration of high concentration of hydrogen sulphide using Thiobacillus thioparus. Process Biochemistry, 39(2), 165–170.Google Scholar
  54. Parawira, W., Read, J. S., Mattiasson, B., & Björnsson, L. (2008). Energy production from agricultural residues: high methane yields in pilot-scale two-stage anaerobic digestion. Biomass and Bioenergy, 32(1), 44–50.Google Scholar
  55. Parkin, G. F., Lynch, N. A., Kuo, W. C., Van Keuren, E. L., & Bhattacharya, S. K. (1990). Interaction between sulfate reducers and methanogens fed acetate and propionate. Research Journal of the Water Pollution Control Federation, 62(6), 780–788.Google Scholar
  56. Patel, G. B., Khan, A. W., Agnew, B. J., & Colvin, J. R. (1980). Isolation and characterization of an anaerobic, cellulolytic microorganism, Acetivibrio cellulolyticus gen. nov., sp. nov. International Journal of Systematic and Evolutionary Microbiology, 30(1), 179–185.Google Scholar
  57. Podosokorskaya, O. A., Bonch-Osmolovskaya, E. A., Beskorovaynyy, A. V., Toshchakov, S. V., Kolganova, T. V., & Kublanov, I. V. (2014). Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 8), 2657–2661.Google Scholar
  58. Pokorna, D., & Zabranska, J. (2015). Sulfur-oxidizing bacteria in environmental technology. Biotechnology Advances, 33(6), 1246–1259.Google Scholar
  59. Schnurer, A., Schink, B., & Svensson, B. H. (1996). Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. International Journal of Systematic Bacteriology, 46(4), 1145–1152.Google Scholar
  60. Sercu, B., Núñez, D., Van Langenhove, H., Aroca, G., & Verstraete, W. (2005). Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnology and Bioengineering, 90(2), 259–269.Google Scholar
  61. Stams, A. J. M., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7(8), 568–577.Google Scholar
  62. Stefanie, J. W. H. O. E., Visser, A., Pol, L. W. H., & Stams, A. J. M. (1994). Sulfate reduction in methanogenic bioreactors. FEMS Microbiology Reviews, 15(2–3), 119–136.Google Scholar
  63. Struk, M., Kushkevych, I. (2018). Perspectives of application of phototrophic sulfur bacteria in hydrogen sulfide utilization. In MendelNet 2018: proceedings of 25th international PhD students conference. Brno, Czech Republic, 537–541.Google Scholar
  64. Sublette, K. L., & Sylvester, N. D. (1987). Oxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophs. Biotechnology and Bioengineering, 29(6), 759–761.Google Scholar
  65. Syed, M. A., & Henshaw, P. F. (2003). Effect of tube size on performance of a fixed-film tubular bioreactor for conversion of hydrogen sulfide to elemental sulfur. Water Research, 37(8), 1932–1938.Google Scholar
  66. Syed, M., Soreanu, G., Falletta, P., & Béland, M. (2006). Removal of hydrogen sulfide from gas streams using biological processes—a review. Canadian Biosystems Engineering, 48, 2.Google Scholar
  67. Tang, K., Baskaran, V., & Nemati, M. (2009). Bacteria of the sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, 44(1), 73–94.Google Scholar
  68. Tursman, J. F., & Cork, D. J. (1989). Influence of sulfate and sulfate-reducing bacteria on anaerobic digestion technology. Advances in Biotechnological Processes, 12, 273–285.Google Scholar
  69. Ullah Khan, I., Hafiz Dzarfan Othman, M., Hashim, H., Matsuura, T., Ismail, A. F., Rezaei-DashtArzhandi, M., & Wan Azelee, I. (2017). Biogas as a renewable energy fuel—a review of biogas upgrading, utilisation and storage. Energy Conversion and Management, 150, 277–294.Google Scholar
  70. van den Brand, T. P. H., Roest, K., Brdjanovic, D., Chen, G. H., & van Loosdrecht, M. C. M. (2014). Influence of acetate and propionate on sulphate-reducing bacteria activity. Journal of Applied Microbiology, 117(6), 1839–1847.Google Scholar
  71. Ziemiński, K., & Frąc, M. (2012). Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. African Journal of Biotechnology, 11(18), 4127–4139.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciencesMendel University in BrnoBrnoCzech Republic

Personalised recommendations