Advertisement

Water, Air, & Soil Pollution

, 230:247 | Cite as

Fungal and Bacterial Co-Bioaugmentation of a Pesticide-Degrading Biomixture: Pesticide Removal and Community Structure Variations during Different Treatments

  • Víctor Castro-Gutiérrez
  • Mario Masís-Mora
  • Elizabeth Carazo-Rojas
  • Marielos Mora-López
  • Carlos E. Rodríguez-RodríguezEmail author
Article
  • 61 Downloads

Abstract

Biopurification systems (BPS) are employed for the treatment of pesticide-containing wastewaters. In this work, a biomixture (active core of BPS) complemented by the addition of the fungus Trametes versicolor was evaluated for the elimination of a mixture of pesticides under different treatment conditions. The biomixture achieved high removal of all the pesticides assayed after 16 d: atrazine (68.4%, t1/2: 9.6 d), carbendazim (96.7%, t1/2: 3.6 d), carbofuran (98.7%, t1/2: 3.1 d) and metalaxyl (96.7%, t1/2: 3.8 d). Variations in the treatment conditions including addition of the antibiotic oxytetracycline and co-bioaugmentation with a bacterial consortium did not significantly affect the removal performance of the biomixture. Bacterial and fungal community profiles determined by DGGE analyses revealed changes that responded to biomixture aging, and not to antibiotic or pesticide addition. The proposed biomixture exhibits very efficient elimination during simultaneous pesticide application; moreover, the matrix is highly stable during stressful conditions such as the co-application of antibiotics of agricultural use.

Keywords

Pesticides Biopurification systems Removal DGGE White-rot fungi 

Notes

Acknowledgements

The authors acknowledge Vicerrectoría de Investigación, Universidad de Costa Rica (projects 802-B4-503 and 802-B6-137), and the Costa Rican Ministry of Science, Technology and Telecommunications, MICITT (project FI-093-13).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11270_2019_4282_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1125 kb)

References

  1. Alexander, M. (1999). Biodegradation and bioremediation. San Diego: Academic Press.Google Scholar
  2. Bastos, A. C., & Magan, N. (2009). Trametes versicolor: Potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. International Biodeterioration and Biodegradation, 63, 389–394.Google Scholar
  3. Bending, G. D., FrilouxM., & Walker, A. (2002). Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiology Letters, 212, 59–63.Google Scholar
  4. Borràs, E., Caminal, G., Sarrà, M., & Novotný, Č. (2010). Effect of soil bacteria on the ability of polycyclic aromatic hydrocarbons (PAHs) removal by Trametes versicolor and Irpex lacteus from contaminated soil. Soil Biology and Biochemistry, 42, 2087–2093.Google Scholar
  5. Bouchez, T., Patureau, D., Dabert, P., Juretschko, S., Dore, J., Delgenes, P., Moletta, R., & Wagner, M. (2000). Ecological study of a bioaugmentation failure. Environmental Microbiology, 2, 179–190.Google Scholar
  6. Briceño, G., Rubilar, O., & Tortella, G. (2013). Bioaumentación de una biomezcla con actinobacterias degradadoras de residuos de plaguicidas organofosforados. Pucón: Workshop Internacional y Taller Nacional Valorización.Google Scholar
  7. Carter, S. R., & Jewell, W. J. (1993). Biotransformation of tetrachloroethylene by anaerobic attached films at low temperatures. Water Research, 27, 607–615.Google Scholar
  8. Castillo, M. D. P., Torstensson, L., & Stenström, J. (2008). Biobeds for environmental protection from pesticide use, a review. Journal of Agricultural and Food Chemistry, 56, 6206–6219.Google Scholar
  9. Castillo-González, H., Pérez-Villanueva, M., Masís-Mora, M., Castro-Gutiérrez, V., & Rodríguez-Rodríguez, C. E. (2017). Antibiotics do not affect the degradation of fungicides and enhance the mineralization of chlorpyrifos in biomixtures. Ecotoxicology and Environmental Safety, 139, 481–487.Google Scholar
  10. Castro-Gutiérrez, V., Masís-Mora, M., Caminal, G., Vicent, T., Carazo-Rojas, E., Mora-López, M., & Rodríguez-Rodríguez, C. E. (2016). A microbial consortium from a biomixture swiftly degrades high concentrations of carbofuran in fluidized-bed reactors. Process Biochemistry, 51, 1585–1593.Google Scholar
  11. Castro-Gutiérrez, V., Masís-Mora, M., Diez, M. C., Tortella, G. R., & Rodríguez-Rodríguez, C. E. (2017). Aging of biomixtures: Effects on carbofuran removal and microbial community structure. Chemosphere, 168, 418–425.Google Scholar
  12. Castro-Gutiérrez, V., Masís-Mora, M., Carazo-Rojas, E., Mora-López, M., & Rodríguez-Rodríguez, C. E. (2018). Impact of oxytetracycline and bacterial bioaugmentation on the efficiency and microbial community structure of a pesticide-degrading biomixture. Environmental Science and Pollution Research, 25, 11787–11799.Google Scholar
  13. Chen, Q., Yang, B., Wang, H., He, F., Gao, Y., & Scheel, R. A. (2015). Soil microbial community toxic response to atrazine and its residues under atrazine and lead contamination. Environmental Science and Pollution Research, 22, 996–1007.Google Scholar
  14. Chin-Pampillo, J. S., Ruiz-Hidalgo, K., Masís-Mora, M., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2015a). Adaptation of biomixtures for carbofuran degradation in on-farm biopurification systems in tropical regions. Environmental Science and Pollution Research, 22, 9839–9848.Google Scholar
  15. Chin-Pampillo, J. S., Ruiz-Hidalgo, K., Masís-Mora, M., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2015b). Design of an optimized biomixture for the degradation of carbofuran based on pesticide removal and toxicity reduction of the matrix. Environmental Science and Pollution Research, 22, 19184–19193.Google Scholar
  16. Chu, B., & Eivazi, F. (2015). Enhancing biodegradation of herbicides using biobed systems. Journal of Environmental Indicators 9, 32–33.Google Scholar
  17. Coppola, L., Castillo, P., & Vischetti, C. (2011). Degradation of isoproturon and bentazone in peat and compost-based biomixtures. Pest Management Science, 67, 107–113.Google Scholar
  18. De Wilde, T., Spanoghe, P., Sniegowksi, K., Ryckeboer, J., Jaeken, P., & Springael, D. (2010). Transport and degradation of metalaxyl and isoproturon in biopurification columns inoculated with pesticide-primed material. Chemosphere, 78, 56–60.Google Scholar
  19. Doddapaneni, H., & Yadav, J. S. (2004). Differential regulation and xenobiotic induction of tandem P450 monooxygenase genes pc-1 (CYP63A1) and pc-2 (CYP63A2) in the white-rot fungus Phanerochaete chrysosporium. Applied Microbiology and Biotechnology, 65, 559–565.Google Scholar
  20. Edwards, E. A., & Cox, E. E. (1997). Field and laboratory evidence of sequential aerobic chlorinated solvent biodegradation. In In situ and on site bioreclamation (pp. 261–265). Columbus: Batelle Press.Google Scholar
  21. Eggert, C., Temp, U., & Eriksson, K. E. (1996). The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: Purification and characterization of the laccase. Applied and Environmental Microbiology, 62, 1151–1158.Google Scholar
  22. Fogg, P., Boxall, A. B., Walker, A., & Jukes, A. A. (2003). Pesticide degradation in a ‘biobed’composting substrate. Pest Management Science, 59, 527–537.Google Scholar
  23. Font-Segura, X., Gabarrell-Durany, X., Lozano, R., & Vicent-Huguet, T. (1993). Detoxification pretreatment of black liquor derived from non-wood feedstock with white-rot fungi. Environmental Technology, 14, 681–687.Google Scholar
  24. González-Laredo, R. F. G., Castro, M. R., Guzmán, N. E. R., Infante, J. A. G., Moreno-Jiménez, M. R., & Karchesy, J. J. (2015). Wood preservation using natural products. Madera Bosques, 21, 63–76.Google Scholar
  25. Goux, S., Shapir, N., El Fantroussi, S., Lelong, S., Agathos, S. N., & Pussemier, L. (2003). Long-term maintenance of rapid atrazine degradation in soils inoculated with atrazine degraders. Water, Air, and Soil Pollution, 3, 131–142.Google Scholar
  26. Hickey, W. J., Fuster, D. J., & Lamar, R. T. (1994). Transformation of atrazine in soil by Phanerochaete chrysosporium. Soil Biology and Biochemistry, 26, 1665–1671.Google Scholar
  27. Huete-Soto, A., Castillo-González, H., Masís-Mora, M., Chin-Pampillo, J. S., & Rodríguez-Rodríguez, C. E. (2017a). Effects of oxytetracycline on the performance and activity of biomixtures: Removal of herbicides and mineralization of chlorpyrifos. Journal of Hazardous Materials, 321, 1–8.Google Scholar
  28. Huete-Soto, A., Masís-Mora, M., Lizano-Fallas, V., Chin-Pampillo, J. S., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2017b). Simultaneous removal of structurally different pesticides in a biomixture: Detoxification and effect of oxytetracycline. Chemosphere, 169, 558–567.Google Scholar
  29. Jiménez-Gamboa, D., Castro-Gutiérrez, V., Fernández-Fernández, E., Briceño-Guevara, S., Masís-Mora, M., Chin-Pampillo, J. S., Mora-López, M., Carazo-Rojas, E., & Rodríguez-Rodríguez, C. E. (2018). Expanding the application scope of on-farm biopurification systems: Effect and removal of oxytetracycline in a biomixture. Journal of Hazardous Materials, 342, 553–560.Google Scholar
  30. Kennedy, D. W., Aust, S. D., & Bumpus, J. A. (1990). Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Applied and Environmental Microbiology, 56, 2347–2353.Google Scholar
  31. Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiology and Molecular Biology Reviews, 54, 305–315.Google Scholar
  32. Lewis, K. A., Tzilivakis, J., Warner, D. J., & Green, A. (2016). An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment, 22, 1050–1064.Google Scholar
  33. Madrigal-Zúñiga, K., Ruiz-Hidalgo, K., Chin-Pampillo, J. S., Masís-Mora, M., Castro-Gutiérrez, V., & Rodríguez-Rodríguez, C. E. (2016). Fungal bioaugmentation of two rice husk-based biomixtures for the removal of carbofuran in on-farm biopurification systems. Biology and Fertility of Soils, 52, 243–250.Google Scholar
  34. Marinozzi, M., Coppola, L., Monaci, E., Karpouzas, D. G., Papadopoulou, E., Menkissoglu-Spiroudi, U., & Vischetti, C. (2013). The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. Environmental Science and Pollution Research, 20, 2546–2555.Google Scholar
  35. McErlean, C., Marchant, R., & Banat, I. M. (2006). An evaluation of soil colonisation potential of selected fungi and their production of ligninolytic enzymes for use in soil bioremediation applications. Antonie Van Leeuwenhoek, 90, 147–158.Google Scholar
  36. Mir-Tutusaus, J. A., Masís-Mora, M., Corcellas, C., Eljarrat, E., Barceló, D., Sarrà, M., Caminal, G., Vicent, T., & Rodríguez-Rodríguez, C. E. (2014). Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Science of The Total Environment, 500, 235–242.Google Scholar
  37. Murillo-Zamora, S., Castro-Gutiérrez, V., Masís-Mora, M., Lizano-Fallas, V., & Rodríguez-Rodríguez, C. E. (2017). Elimination of fungicides in biopurification systems: Effect of fungal bioaugmentation on removal performance and microbial community structure. Chemosphere, 186, 625–634.Google Scholar
  38. Neilson, J. W., Jordan, F. L., & Maier, R. M. (2013). Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. Journal of Microbiological Methods, 92, 256–263.Google Scholar
  39. Novotný, Č., Erbanová, P., Šašek, V., Kubátová, A., Cajthaml, T., Lang, E., Krahl, J., & Zadražil, F. (1999). Extracellular oxidative enzyme production and PAH removal in soil by exploratory mycelium of white rot fungi. Biodegradation, 10, 159–168.Google Scholar
  40. Płaza, G. A., Upchurch, R., Brigmon, R. L., Whitman, W. B., & Ulfig, K. (2004). Rapid DNA extraction for screening soil filamentous fungi using PCR amplification. Polish Journal of Environmental Studies, 13, 315–318.Google Scholar
  41. Pointing, S. (2001). Feasibility of bioremediation by white-rot fungi. Applied Microbiology and Biotechnology, 57, 20–33.Google Scholar
  42. Quintero, J. C., Lu-Chau, T. A., Moreira, M. T., Feijoo, G., & Lema, J. M. (2007). Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. International Biodeterioration & Biodegradation, 60, 319–326.Google Scholar
  43. Rigas, F., Papadopoulou, K., Dritsa, V., & Doulia, D. (2007). Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. Journal of Hazardous Materials, 140, 325–332.Google Scholar
  44. Rodríguez-Rodríguez, C. E., Castro-Gutiérrez, V., Chin-Pampillo, J. S., & Ruiz-Hidalgo, K. (2013). On-farm biopurification systems: Role of white rot fungi in depuration of pesticide-containing wastewaters. FEMS Microbiology Letters, 345, 1–12.Google Scholar
  45. Ruiz-Hidalgo, K., Chin-Pampillo, J. S., Masís-Mora, M., Carazo, E., & Rodríguez-Rodríguez, C. E. (2014). Degradation of carbofuran by Trametes versicolor in rice husk as a potential lignocellulosic substrate for biomixtures: From mineralization to toxicity reduction. Process Biochemistry, 49, 2266–2271.Google Scholar
  46. Singh, B. K., & Kuhad, R. C. (1999). Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Letters in Applied Microbiology, 28, 238–241.Google Scholar
  47. Sniegowski, K., Bers, K., Van Goetem, K., Ryckeboer, J., Jaeken, P., Spanoghe, P., & Springael, D. (2011). Improvement of pesticide mineralization in on-farm biopurification systems by bioaugmentation with pesticide-primed soil. FEMS Microbiology Ecology, 76, 64–73.Google Scholar
  48. Stoilova, I., Krastanov, A., & Stanchev, V. (2010). Properties of crude laccase from Trametes versicolor produced by solid-substrate fermentation. Advances in Bioscience and Biotechnology, 1, 208–215.Google Scholar
  49. Struthers, J. K., Jayachandran, K., & Moorman, T. B. (1998). Biodegradation of atrazine by Agrobacterium radiobacter J14a and use of this strain in bioremediation of contaminated soil. Applied and Environmental Microbiology, 64, 3368–3375.Google Scholar
  50. Tavares, A. P. M., Coelho, M. A. Z., Agapito, M. S. M., Coutinho, J. A. P., & Xavier, A. M. R. B. (2006). Optimization and modeling of laccase production by Trametes versicolor in a bioreactor using statistical experimental design. Applied Biochemistry and Biotechnology, 134, 233–248.Google Scholar
  51. Tortella, G. R., Mella-Herrera, R. A., Sousa, D. Z., Rubilar, O., Acuña, J. J., Briceño, G., & Diez, M. C. (2013a). Atrazine dissipation and its impact on the microbial communities and community level physiological profiles in a microcosm simulating the biomixture of on-farm biopurification system. Journal of Hazardous Materials, 260, 459–467.Google Scholar
  52. Tortella, G. R., Mella-Herrera, R. A., Sousa, D. Z., Rubilar, O., Briceño, G., Parra, L., & Diez, M. C. (2013b). Carbendazim dissipation in the biomixture of on-farm biopurification systems and its effect on microbial communities. Chemosphere, 93, 1084–1093.Google Scholar
  53. Tortella, G. R., Rubilar, O., Stenström, J., Cea, M., Briceño, G., Quiroz, A., Diez, M. C., & Parra, L. (2013c). Using volatile organic compounds to enhance atrazine biodegradation in a biobed system. Biodegradation, 24, 711–720.Google Scholar
  54. Verhagen, P., De Gelder, L., & Boon, N. (2013). Inoculation with a mixed degrading culture improves the pesticide removal of an on-farm biopurification system. Current Microbiology, 67, 466–471.Google Scholar
  55. Vischetti, C., Monaci, E., Cardinali, A., Casucci, C., & Perucci, P. (2008). The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture. Chemosphere, 72, 1739–1743.Google Scholar
  56. von Wirén-Lehr, S., del Pilar Castillo, M., Torstensson, L., & Scheunert, I. (2001). Degradation of isoproturon in biobeds. Biology and Fertility of Soils, 33, 535–540.Google Scholar
  57. Yu, Y., Chu, X., Pang, G., Xiang, Y., & Fang, H. (2009). Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Sciences, 21, 179–185.Google Scholar
  58. Zablotowicz, R. M., Weaver, M. A., & Locke, M. A. (2006). Microbial adaptation for accelerated atrazine mineralization/degradation in Mississippi Delta soils. Weed Science, 54, 538–547.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Investigación en Contaminación Ambiental (CICA)Universidad de Costa RicaSan JoséCosta Rica
  2. 2.Centro de Investigación en Biología Celular y Molecular (CIBCM)Universidad de Costa RicaSan JoséCosta Rica

Personalised recommendations