Advertisement

Nobel Materials (ZnO Nanoparticles and ZnO Nanoparticles Supported on a Zeolite) for the Removal of Tartrazine from Aqueous Solutions

  • A. Alcantara-Cobos
  • M. Solache-Rios
  • E. Gutiérrez-SeguraEmail author
Article
  • 39 Downloads

Abstract

Two materials (ZnO nanoparticles (nanZnO) and a composite (Ze-nanZnO)) were prepared; the composite was prepared by chemical precipitation on a natural zeolite. The materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), UV-Vis spectroscopy (UV-Vis), and Branauer-Emmett-Teller (BET) surface area. These materials were evaluated for the removal of tartrazine; this dye was used because it is considered a dangerous contaminant. All experiments were done in batch process. The effect of different parameters such as the contact time, the initial dye concentration, and pH, in addition to the thermodynamic parameters, were studied in order to determine the best experimental conditions. The nanZnO shows a higher adsorption capacity than the Ze-nanZnO composite; however, the separation of the phases was difficult when nanoparticles were used. According to the kinetic data, the mechanism for the nanZnO is physisorption and for the Ze-nanZnO composite is chemisorption. The results show that this is a useful technique for the removal of this dye.

Keywords

Tartrazine ZnO nanoparticles Composite Removal Zeolites 

Notes

Funding Information

This study received financial support from the Universidad Autónoma del Estado de México (project 4523/2018/CI), Conacyt (project 254665) and scholarship Grant No. 303739 for AAC.

References

  1. Abdullmajed, H., Al-ahmad, A. Y., & Hussain, K. A. (2011). The preparation, characterization and the study of the linear optical properties of a new azo compound. Journal of Basrah Researches, 37(April), 64–73.Google Scholar
  2. Amaringo, F., & Hormaza, A. (2016). Determination of the point of zero charge and isoelectric point of two agricultural wastes and their application in the removal of colorants D eterminación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoci. Revista de Investigación Agraria y Ambiental, 4, 27–36.CrossRefGoogle Scholar
  3. Aysan, H., Edebali, S., Ozdemir, C., & Karakaya, M. C. (2016). Use of chabazite, a naturally abundant zeolite, for the investigation of adsorption kinetics and mechanism of methyl blue dye. Microporous and Mesoporous Materials, 235, 78–86.  https://doi.org/10.1016/j.micromeso.2016.08.007.CrossRefGoogle Scholar
  4. Bagabas, A., Alshammari, A., Aboud, M. F., & Kosslick, H. (2013). Room-temperature synthesis of zinc oxide nanoparticles in different media and their application in cyanide photodegradation. Nanoscale Research Letters, 8, 516–531.  https://doi.org/10.1186/1556-276X-8-516.CrossRefGoogle Scholar
  5. Corral-Capulin, N. G., Vilchis-Nestor, A. R., Gutiérrez-Segura, E., & Solache-Ríos, M. (2018). The influence of chemical and thermal treatments on the fluoride removal from water by three mineral structures and their characterization. Journal of Fluorine Chemistry, 213, 42–50.  https://doi.org/10.1016/j.jfluchem.2018.07.00.CrossRefGoogle Scholar
  6. Dotto, G. L., Vieira, M. L. G., & Pinto, L. A. A. (2012). Kinetics and mechanism of tartrazine adsorption onto chitin and chitosan. Industrial and Engineering Chemistry Research, 51(19), 6862–6868.  https://doi.org/10.1021/ie2030757.CrossRefGoogle Scholar
  7. Fereshteh, Z., Loghman-Estarki, M. R., Shoja Razavi, R., & Taheran, M. (2013). Template synthesis of zinc oxide nanoparticles entrapped in the zeolite y matrix and applying them for thermal control paint. Materials Science in Semiconductor Processing, 16(2), 547–553.  https://doi.org/10.1016/j.mssp.2012.08.005.CrossRefGoogle Scholar
  8. Ghaedi, M., Nasab, A. G., Khodadoust, S., Sahraei, R., & Daneshfar, A. (2015). Palladium, silver, and zinc oxide nanoparticles loaded on activated carbon as adsorbent for removal of bromophenol red from aqueous solution. Journal of Industrial and Engineering Chemistry, 21, 986–993.  https://doi.org/10.1016/j.jiec.2012.12.020.CrossRefGoogle Scholar
  9. Goes, M. F., Sinhoreti, M. A., Consani, S., & Silva, M. A. (1998). Morphological effect of the type, concentration and etching time of acid solutions on enamel and dentin surfaces. Brazilian Dental Journal, 9(1), 3–10.  https://doi.org/10.1088/1742-6596/755/1/011001.CrossRefGoogle Scholar
  10. Gómez, M., Arancibia, V., Rojas, C., & Nagles, E. (2012). Adsorptive stripping voltammetric determination of tartrazine and sunset yellow in gelatins and soft drink powder in the presence of cetylpyridinium bromide. International Journal of Electrochemical Science, 7, 7493–7502.Google Scholar
  11. Gutiérrez-Segura, E., Solache-Ríos, M., & Colín-Cruz, A. (2009). Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge. Journal of Hazardous Materials, 170, 1227–1235.  https://doi.org/10.1016/j.jhazmat.2009.05.102.CrossRefGoogle Scholar
  12. Hilal, S. H., Karickhoff, S. W., & Carreira, L. A. (1999). Estimation of microscopic, zwitterionic ionization constants, isoelectric point and molecular speciation of organic compounds. Talanta, 50, 827–840.CrossRefGoogle Scholar
  13. Hu, T., Liu, Q., Gao, T., Dong, K., Wei, G., & Yao, J. (2018). Facile preparation of tannic acid–poly(vinyl alcohol)/sodium alginate hydrogel beads for methylene blue removal from simulated solution. ACS Omega, 3, 7523–7531.  https://doi.org/10.1021/acsomega.8b00577.CrossRefGoogle Scholar
  14. Huang, Q., Song, S., Chen, Z., Hu, B., Chen, J., & Wang, X. (2019). Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar, 1(1), 45–73.  https://doi.org/10.1007/s42773-019-00006-5.CrossRefGoogle Scholar
  15. Jiménez-Cedillo, M. J., Olguín, M. T., Fall, C., & Colín, A. (2011). Adsorption capacity of iron- or iron-manganese-modified zeolite-rich tuffs for As(III) and As(V) water pollutants. Applied Clay Science, 54, 206–216.  https://doi.org/10.1016/j.clay.2011.09.004.CrossRefGoogle Scholar
  16. Joshi, R. (2018). Facile photochemical synthesis of ZnO nanoparticles in aqueous solution without capping agents. Materialia, 2, 104–110.  https://doi.org/10.1016/j.mtla.2018.07.001.CrossRefGoogle Scholar
  17. Kamari, A., Ngah, W. S. W., Chong, M. Y., & Cheah, M. L. (2009). Sorption of acid dyes onto GLA and H2SO4 cross-linked chitosan beads. Desalination, 249, 1180–1189.  https://doi.org/10.1016/j.desal.2009.04.010.CrossRefGoogle Scholar
  18. Khodami, Z., & Nezamzadeh-ejhieh, A. (2015). Chemical investigation of photocatalytic effect of ZnO – SnO 2/nano clinoptilolite system in the photodegradation of aqueous mixture of 4-methylbenzoic acid/2-chloro-5-nitrobenzoic acid. Journal of Molecular Catalysis A, 409, 59–68.  https://doi.org/10.1016/j.molcata.2015.08.013.CrossRefGoogle Scholar
  19. Kim, T., Song, H. J., Dar, M. A., & Lee, H. (2018). Fast adsorption kinetics of highly dispersed ultrafine nickel/carbon nanoparticles for organic dye removal. Applied Surface Science, 18, 169–189.  https://doi.org/10.1016/j.apsusc.2018.01.061.CrossRefGoogle Scholar
  20. Kussainova, M. Z., Jussipbekov, U. Z., Pasa, S., Jussipbekov, U. Z., & Pasa, S. (2019). Structural investigation of raw clinoptilolite over the Pb2+ adsorption process from phosphoric acid. Journal of Molecular Structure, 1184, 49–58.  https://doi.org/10.1016/j.molstruc.2019.02.012.CrossRefGoogle Scholar
  21. Li, S. Q., Zhou, P. J., Zhang, W. S., Chen, S., & Peng, H. (2014). Effective photocatalytic decolorization of methylene blue utilizing ZnO/rectorite nanocomposite under simulated solar irradiation. Journal of Alloys and Compounds, 616, 227–234.  https://doi.org/10.1016/j.jallcom.2014.07.102.CrossRefGoogle Scholar
  22. Mohaghegh, N., Tasviri, M., Rahimi, E., & Gholami, M. R. (2014). Nano sized ZnO composites: preparation, characterization and application as photocatalysts for degradation of AB92 azo dye. Materials Science in Semiconductor Processing, 21, 167–179.  https://doi.org/10.1016/j.mssp.2013.12.023.CrossRefGoogle Scholar
  23. Nibou, D., Mekatel, H., Amokrane, S., Barkat, M., & Trari, M. (2010). Adsorption of Zn 2 + ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies. Journal of Hazardous Materials journal, 173, 637–646.  https://doi.org/10.1016/j.jhazmat.2009.08.132.CrossRefGoogle Scholar
  24. Nomura, Y., Fukahori, S., Fukada, H., & Fujiwara, T. (2017). Removal behaviors of sulfamonomethoxine and its degradation intermediates in fresh aquaculture wastewater using zeolite/TiO2composites. Journal of Hazardous Materials, 340, 427–434.  https://doi.org/10.1016/j.jhazmat.2017.07.034.CrossRefGoogle Scholar
  25. Parimal, S., Prasad, M., & Bhaskar, U. (2010). Prediction of equillibrium sorption isotherm: comparison of linear and nonlinear methods. Industrial & Engineering Chemistry Research, 49, 2882–2888.  https://doi.org/10.1021/ie9013343.CrossRefGoogle Scholar
  26. Sahnoun, S., Boutahala, M., & Boutahala, M. (2018). Adsorption removal of tartrazine by chitosan/polyaniline composite: kinetics and equilibrium studies. Biological Macromolecules, 17, 330–339.  https://doi.org/10.1016/j.ijbiomac.2018.02.146.CrossRefGoogle Scholar
  27. Saini, J., Garg, V. K., Gupta, R. K., & Kataria, N. (2017). Removal of orange G and rhodamine B dyes from aqueous system using hydrothermally synthesized zinc oxide loaded activated carbon (ZnO-AC). Journal of Environmental Chemical Engineering, 5, 884–892.  https://doi.org/10.1016/j.jece.2017.01.012.CrossRefGoogle Scholar
  28. Salehi, R., Arami, M., Mahmoodi, N. M., Bahrami, H., & Khorramfar, S. (2010). Novel biocompatible composite (chitosan-zinc oxide nanoparticle): preparation, characterization and dye adsorption properties. Colloids and Surfaces B: Biointerfaces, 80, 86–93.  https://doi.org/10.1016/j.colsurfb.2010.05.039.CrossRefGoogle Scholar
  29. Saroj, S., Kumar, K., Pareek, N., Prasad, R., & Singh, R. P. (2014). Biodegradation of azo dyes Acid Red 183, Direct Blue 15 and Direct Red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere, 107, 240–248.  https://doi.org/10.1016/j.chemosphere.2013.12.049.CrossRefGoogle Scholar
  30. Sharmila, P. P., & Tharayil, N. J. (2014). DNA assisted synthesis, characterization and optical properties of zinc oxide nanoparticles. International Journal of Materials Science and Engineering, 2, 147–151.  https://doi.org/10.17706/ijmse.CrossRefGoogle Scholar
  31. Sun, Q., Hu, X., Zheng, S., Sun, Z., Liu, S., & Li, H. (2015). Influence of calcination temperature on the structural, adsorption and photocatalytic properties of TiO2 nanoparticles supported on natural zeolite. Powder Technology, 274, 88–97.  https://doi.org/10.1016/j.powtec.2014.12.052.CrossRefGoogle Scholar
  32. Torres, J., Solache, M., & Colín, A. (2008). Sorption and desorption of dye remazol yellow onto a Mexican surfactant-modified clinoptilolite-rich tuff and a carbonaceous material from pyrolysis of sewage sludge. Water, Air, and Soil Pollution, 187, 303–313.  https://doi.org/10.1007/s11270-007-9518-6.CrossRefGoogle Scholar
  33. Van Speybroeck, V., Hemelsoet, K., Joos, L., Waroquier, M., Bell, R. G., & Catlow, C. R. A. (2015). Advances in theory and their application within the field of zeolite chemistry. Chemical Society Reviews, 44, 7044–7111.  https://doi.org/10.1039/c5cs00029.CrossRefGoogle Scholar
  34. Vasco, A. P., Betancur, M. V., & Ambientales, G. D. I. (2014). Kinetic studies for the adsorptive of indigo carmine by abrasive. Grupo de Investigaciones Ambientales; Universidad Pontificia Bolivariana, 8, 131–139.Google Scholar
  35. Vijayakumar, S., Vinoj, G., Malaikozhundan, B., Shanthi, S., Vaseeharan, B., Vinoj, G., et al. (2014). Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochimica acta Part A: Molecular Biomolecular Spectroscopy, 15, 258–267.  https://doi.org/10.1016/j.saa.2014.08.064.CrossRefGoogle Scholar
  36. Wan Ngah, W. S., Teong, L. C., Toh, R. H., & Hanafiah, M. A. K. M. (2012). Utilization of chitosan-zeolite composite in the removal of cu(II) from aqueous solution: adsorption, desorption and fixed bed column studies. Chemical Engineering Journal, 209, 46–53.  https://doi.org/10.1016/j.cej.2012.07.116.CrossRefGoogle Scholar
  37. Wawrzkiewicz, M., & Hubicki, Z. (2009). Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins. Journal of Hazardous Materials journal, 164, 502–509.  https://doi.org/10.1016/j.jhazmat.2008.08.021.CrossRefGoogle Scholar
  38. Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M., & Nazar, M. F. (2018). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology, 7, 1–13.  https://doi.org/10.1016/j.jmrt.2018.06.002.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Ciencia de Materiales de la Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico
  2. 2.Departamento de QuímicaInstituto Nacional de Investigaciones NuclearesOcoyoacacMexico
  3. 3.Facultad de QuímicaUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations