Advertisement

Copper and Zinc in Rhizosphere Soil and Toxicity Potential in White Oats (Avena sativa) Grown in Soil with Long-Term Pig Manure Application

  • Lucas BenedetEmail author
  • Lessandro De Conti
  • Cleiton Junior Ribeiro Lazzari
  • Vilmar Müller Júnior
  • Deborah Pinheiro Dick
  • Cledimar Rogério Lourenzi
  • Paulo Emílio Lovato
  • Jucinei José Comin
  • Tadeu Luis Tiecher
  • Felipe Klein Ricachenevsky
  • Gustavo Brunetto
Article
  • 18 Downloads

Abstract

Successive applications of pig manure increase Cu and Zn contents in soils and may cause toxicity to plants. However, plants may have defense strategies that reduce Cu and Zn availability in rhizosphere soil. The study aimed to evaluate growth of white oats (Avena sativa) and Cu and Zn availability in rhizosphere soil subjected to long-term applications of pig slurry (PS) and pig deep litter (PL). The study was carried out with samples of a Typic Hapludalf soil from an 11-year experiment with annual fertilization of 180 kg N ha−1 as pig slurry (PS180) and pig deep litter (PL180) and a control (C) treatment. White oats were grown in pots with soil collected at 0.0–0.10 m depth. Thirty-five and 70 days after emergence (DAE), rhizosphere (RS) and bulk soil (BS) were analyzed to determine Cu and Zn availability. Plant growth, tissue Cu and Zn concentration, and content (concentration X dry weight) were measured. The application of pig manure for 11 years increased available soil Cu and Zn, as well as tissue concentration and content. Dry matter yield and plant height in PL180 were similar to those found in plants grown in the control treatment, while plants grown in PS180 had higher dry matter than in C. We found few differences in soil chemical characteristics and Cu and Zn contents between RS and BS. The high Cu concentrations in roots, especially in soil treated with PL180, show that Cu retention in the roots prevents excess Cu transport to white oat shoots.

Keywords

Cu and Zn availability Pig slurry Pig deep litter Roots 

Notes

Funding Information

Funding was received from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Project 479005/2011), Coordenação de Aperfeiçoamento da Educação Superior (Brasil-CAPES/Finance Code 001), Fundação de Apoio à Pesquisa e Inovação no Estado de Santa Catarina (FAPESC) (11.339/2012-5), and Tecnologias Sociais para a Gestão das Águas (TSGA II)-Petrobrás Ambiental Project (6000.00029243072).

Supplementary material

11270_2019_4249_MOESM1_ESM.docx (35 kb)
ESM 1 (DOCX 34 kb)

References

  1. Adrees, M., Ali, S., Rizwan, M., Ibrahim, M., Abbas, F., Farid, M., Zia-ur-Rehman, M., Irshad, M. K., & Bharwana, S. A. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22, 8148–8162.CrossRefGoogle Scholar
  2. Ambrosini, V. G., Rosa, D. J., Prado, J. P. C., Borghezan, M., de Melo, G. W. B., de Sousa Soares, C. R. F., Comin, J. J., Simão, D. G., & Brunetto, G. (2015). Reduction of copper phytotoxicity by liming: A study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiology and Biochemistry, 96, 270–280.CrossRefGoogle Scholar
  3. Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasadd, M. N. V., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–a review. Earth-Science Reviews, 171, 621–645.CrossRefGoogle Scholar
  4. Arias, M., Pérez-Novo, C., Osorio, F., López, E., & Soto, B. (2005). Adsorption and desorption of copper and zinc in the surface layer of acid soils. Journal of Colloid and Interface Science, 288, 21–29.CrossRefGoogle Scholar
  5. Arias, M., Pérez-Novo, C., López, E., & Soto, B. (2006). Competitive adsorption and desorption of copper and zinc in acid soils. Geoderma, 133, 151–159.CrossRefGoogle Scholar
  6. Benedet, L., Comin, J. J., Pescador, R., de Oliveira, P. A. V., Belli Filho, P., De Conti, L., Couto, R. R., Lovato, P. E., Cesco, S., Mimmo, T., & Brunetto, G. (2016). Physiological changes in maize grown in soil with copper and zinc accumulation resulting from the addition of pig slurry and deep litter over 10 years. Water, Air, & Soil Pollution, 227(11), 401.CrossRefGoogle Scholar
  7. Chaignon, V., Quesnoit, M., & Hinsinger, P. (2009). Copper availability and bioavailability are controlled by rhizosphere pH in rape grown in an acidic cu-contaminated soil. Environmental Pollution, 157, 3363–3369.CrossRefGoogle Scholar
  8. Chen, Y. T., Wang, Y., & Yeh, K. C. (2017). Role of root exudates in metal acquisition and tolerance. Current Opinion in Plant Biology, 39, 66–72.CrossRefGoogle Scholar
  9. Comin, J. J., Ambrosini, V. G., Rosa, D. J., Basso, A., Loss, A., Melo, G. W. B. D., Lovato, P. E., Lourenzi, C. R., Ricachenevsky, F. K., & Brunetto, G. (2018). Liming as a means of reducing copper toxicity in black oats. Ciência Rural, 48(4).Google Scholar
  10. CQFS-RS/SC. (2004). Fertilization and liming manual for the states of Rio Grande do Sul and Santa Catarina (10th ed.). Porto Alegre: Brazilian Society of Soil Science-South Regional Nucleus.Google Scholar
  11. De Conti, L., Ceretta, C. A., Ferreira, P. A., Lourenzi, C. R., Girotto, E., Lorensini, F., Tiecher, T. L., Marchezan, C., Anchieta, M. G., & Brunetto, G. (2016). Soil solution concentrations and chemical species of copper and zinc in a soil with a history of pig slurry application and plant cultivation. Agriculture, Ecosystems & Environment, 216, 374–386.CrossRefGoogle Scholar
  12. De Conti, L., Ceretta, C. A., Tiecher, T. L., da Silva, L. O., Tassinari, A., Somavilla, L. M., Mimmo, T., Cesco, S., & Brunetto, G. (2018). Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. Ecotoxicology and Environmental Safety, 163, 19–27.CrossRefGoogle Scholar
  13. dos Santos, H. G., Jacomine, P. K. T., dos Anjos, L. H. C., de Oliveira, V. A., Lumbreras, J. F., Coelho, M. R., de Almeida, J. A., Filho, A., de, J. C., Oliveira, J. B. d., & Cunha, T. J. F. (2018). Brazilian system of soil classification. 5th. ed. Brasília: Embrapa.Google Scholar
  14. Empresa Brasileira de Pesquisa Agropecuária. (1997). Manual de métodos de análise de solos. 2nd. ed. Rio de Janeiro: National Soil Research Center.Google Scholar
  15. Formentini, T. A., Mallmann, F. J. K., Pinheiro, A., Fernandes, C. V. S., Bender, M. A., Da Veiga, M., dos Santos, D. R., & Doelsch, E. (2015). Copper and zinc accumulation and fractionation in a clayey hapludox soil subject to long-term pig slurry application. Science of the Total Environment, 536, 831–839.CrossRefGoogle Scholar
  16. Girotto, E., Ceretta, C. A., Rossato, L. V., Farias, J. G., Tiecher, T. L., De Conti, L., Schmatz, R., Brunetto, G., Schetinger, M. R. C., & Nicoloso, F. T. (2013). Triggered antioxidant defense mechanism in maize grown in soil with accumulation of cu and Zn due to intensive application of pig slurry. Ecotoxicology and Environmental Safety, 93, 145–155.CrossRefGoogle Scholar
  17. Goswami, S., & Das, S. (2017). Screening of cadmium and copper phytoremediation ability of Tagetes erecta, using biochemical parameters and scanning electron microscopy–energy-dispersive X-ray microanalysis. Environmental Toxicology and Chemistry, 36, 2533–2542.CrossRefGoogle Scholar
  18. Houben, D., & Sonnet, P. (2015). Impact of biochar and root-induced changes on metal dynamics in the rhizosphere of Agrostis capillaris and Lupinus albus. Chemosphere, 139, 644–651.CrossRefGoogle Scholar
  19. Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.CrossRefGoogle Scholar
  20. Kumar, A., Tsechansky, L., Lew, B., Raveh, E., Frenkel, O., & Graber, E. R. (2018). Biochar alleviates phytotoxicity in Ficus elastica grown in Zn-contaminated soil. Science of the Total Environment, 618, 188–198.CrossRefGoogle Scholar
  21. Murphy, J., & Riley, J. P. (1962). A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36.CrossRefGoogle Scholar
  22. Nietfeld, H., Prenzel, J., Helmisaari, H. S., Polle, A., & Beese, F. (2017). Modeling of mineral nutrient uptake of spruce tree roots as affected by the ion dynamics in the rhizosphere: Upscaling of model results to field plot scale. Ecological Modelling, 345, 150–164.CrossRefGoogle Scholar
  23. Novozamsky, I., Lexmond, T. M., & Houba, V. J. G. (1993). A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. International Journal of Environmental Analytical Chemistry, 51(1–4).Google Scholar
  24. Page, V., & Feller, U. (2015). Heavy metals in crop plants: Transport and redistribution processes on the whole plant level. Agronomy, 5, 447–463.CrossRefGoogle Scholar
  25. Provenzano, M. R., Malerba, A. D., Pezzolla, D., & Gigliotti, G. (2014). Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Management, 34, 653–660.CrossRefGoogle Scholar
  26. Soil Survey Staff. (2014). Keys to soil taxonomy (12th ed.). Washington: United States Department of Agriculture- Natural Resources Conservation Service.Google Scholar
  27. Tedesco, M. J., Gianello, C., Bissani, C. A., Bohnen, H., & Volkweiss, S. J. (1995). Analysis of soil, plants and other materials. Porto Alegre: Departamento de Solos, UFRGS.Google Scholar
  28. Thangarajan, R., Bolan, N. S., Tian, G., Naidu, R., & Kunhikrishnan, A. (2013). Role of organic amendment application on greenhouse gas emission from soil. Science of the Total Environment, 465, 72–96.CrossRefGoogle Scholar
  29. Tiecher, T. L., Ceretta, C. A., Comin, J. J., Girotto, E., Miotto, A., Moraes, M. P. D., Benedet, L., Ferreira, P. A. A., Lourenzi, C. R., Couto, R. d. R., & Brunetto, G. (2013). Forms and accumulation of copper and zinc in a sandy typic hapludalf soil after long-term application of pig slurry and deep litter. Revista Brasileira de Ciência do Solo, 37, 812–824.CrossRefGoogle Scholar
  30. Tiecher, T. L., Ceretta, C. A., Tiecher, T., Ferreira, P. A. A., Nicoloso, F. T., Soriani, H. H., Rossato, L. V., Mimmo, T., Cesco, S., Lourenzi, C. R., Giachini, A. J., & Brunetto, G. (2016). Effects of zinc addition to a copper-contaminated vineyard soil on sorption of Zn by soil and plant physiological responses. Ecotoxicology and Environmental Safety, 12, 109–119.CrossRefGoogle Scholar
  31. Tiecher, T. L., Tiecher, T., Ceretta, C. A., Ferreira, P. A., Nicoloso, F. T., Soriani, H. H., De Conti, L., Kullman, M. S. S., Schneider, R. O., & Brunetto, G. (2017). Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with interaction of high doses of copper and zinc. Scientia Horticulturae, 222, 203–212.CrossRefGoogle Scholar
  32. United States Environmental Protection Agency. (1996). Acid Digestion of Sludges, Solids and Soils, USEPA 3050B, in SW-846 Pt 1. Cincinnati: Office of Solid and Hazardous Wastes, USEPA.Google Scholar
  33. Xu, Z. M., Li, Q. S., Yang, P., Ye, H. J., Chen, Z. S., Guo, S. H., Wang, L. L., He, B. Y., & Zeng, E. Y. (2017). Impact of osmoregulation on the differences in cd accumulation between two contrasting edible amaranth cultivars grown on cd-polluted saline soils. Environmental Pollution, 224, 89–97.CrossRefGoogle Scholar
  34. Zhao, Z., Xi, M., Jiang, G., Liu, X., Bai, Z., & Huang, Y. (2010). Effects of IDSA, EDDS and EDTA on heavy metals accumulation in hydroponically grown maize (Zea mays, L.). Journal of Hazardous Materials, 181, 455–459.CrossRefGoogle Scholar
  35. Zhou, S., Liu, J., Xu, M., Lv, J., & Sun, N. (2015). Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping. Environmental Science and Pollution Research, 22, 15154–15163.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lucas Benedet
    • 1
    • 2
    Email author
  • Lessandro De Conti
    • 3
  • Cleiton Junior Ribeiro Lazzari
    • 4
  • Vilmar Müller Júnior
    • 5
  • Deborah Pinheiro Dick
    • 6
  • Cledimar Rogério Lourenzi
    • 2
  • Paulo Emílio Lovato
    • 2
  • Jucinei José Comin
    • 2
  • Tadeu Luis Tiecher
    • 7
  • Felipe Klein Ricachenevsky
    • 8
  • Gustavo Brunetto
    • 3
  1. 1.Department of Soil ScienceFederal University of LavrasLavrasBrazil
  2. 2.Department of Rural Engineering, Center of Agricultural SciencesFederal University of Santa CatarinaFlorianópolisBrazil
  3. 3.Department of Soil Science, Center of Rural ScienceFederal University of Santa MariaSanta MariaBrazil
  4. 4.Department of Agronomy, Agroveterinary Sciences CenterUniversity of the State of Santa CatarinaLagesBrazil
  5. 5.Department of Sanitary and Environmental Engineering, Technological CenterFederal University of Santa CatarinaFlorianópolisBrazil
  6. 6.Physicochemical Department, Institute of ChemistryFederal University of Rio Grande do SulPorto AlegreBrazil
  7. 7.Federal Institute FarroupilhaAlegreteBrazil
  8. 8.Department of Biology, Center for Natural and Exact SciencesFederal University of Santa MariaSanta MariaBrazil

Personalised recommendations