Advertisement

Water, Air, & Soil Pollution

, 230:212 | Cite as

Assessment of the Pollution Status and Human Health Risk in Soils from an Agricultural Valley in Northwest Mexico

  • Daniela Alvarado-Zambrano
  • Carlos R. Green-RuizEmail author
Article
  • 289 Downloads

Abstract

San Juan de los Planes agricultural valley (SJPV) was studied to determine the pollution of the soils and the source of the pollutants, and revise possible ecological risks and health risks for the inhabitants due to the presence of these elements. On average, the total concentration order was As > Zn > Cu > Co > Cd. A multivariate analysis was made to identify the source of the elements and a correlation analysis to relate the concentrations and soil properties. Seven geochemical indices, two ecotoxicological, and two health risk indices were estimated. The enrichment factor (EF) showed minor or no enrichment, and the geoaccumulation index (Igeo) defined the valley as uncontaminated to moderately contaminated. The contamination factor (Cf), contamination degree (CD), and modified contamination degree (mCD) showed low or moderate contamination. The pollution load index (PLI) and comprehensive pollution index (Pn) indicated that four sites are moderately to seriously polluted with As and Cd. The potential ecological risk factor (Er) classified the area with a low potential, and the potential ecological risk index (RIEc) resulted as low ecological risk for 87% of the sites. The hazard index (HI) revealed that the contents of As and Cd can cause non-carcinogenic health problems and the carcinogenic risk index (RI) showed that As is a potential threat to the inhabitants. Given that the pollution with As and Cd is occurring in only four of the sites and that they were correlated with silt fraction, it can be said that this is related to the agrochemicals and not from the mining activities uphill.

Keywords

Agriculture soil Soil pollution Human health indices Pollution indices PCA 

Notes

Acknowledgments

Lastly, we acknowledge Imelda Martínez, Daniela Valladolid, and Humberto Bojórquez for their assistance in chemical analyses.

Funding

The work was financed by the Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica from Universidad Nacional Autónoma de México (PAPIIT IN110716) and partially by the Programa de Mejoramiento del Profesorado de la Secretaría de Educación Pública, Red Temática de Colaboración Académica: Contaminación acuática: Niveles y efectos (year 3). The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACYT) for providing doctoral scholarship to D. Alvarado-Zambrano.

Supplementary material

11270_2019_4246_MOESM1_ESM.docx (18 kb)
ESM 1 (DOCX 18 kb)

References

  1. Abrahim, G. M., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136(1–3), 227–238.Google Scholar
  2. Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. In B. J. Alloway (Ed.), Heavy metals in soils (pp. 11–50). Netherlands: Springer.CrossRefGoogle Scholar
  3. Alvarado-Zambrano, D. (2012). Incorporación de metales en testas de foraminíferos, desde los sedimentos y agua asociados en la laguna costera estero de Urías, Sinaloa, México. Master degree thesis. Universidad Nacional Autónoma de México, Mazatlán, Sinaloa, México.Google Scholar
  4. Baran, A., Wieczorek, J., Mazurek, R., Urbánski, K., & Klimkowicz-Pawlas, A. (2018). Potential ecological risk assessment and predicting zinc accumulation in soils. Environmental Geochemistry and Health, 40, 435–450.CrossRefGoogle Scholar
  5. Birth, G. (2003). A scheme for assessing human impacts on coastal aquatic environments using sediments. In C. D. Woodcoffe & R. A. Furness (Eds.), Coastal GIS. Australia: Wollongong University Papers in Center for Maritime Policy 14.Google Scholar
  6. Breder, R. (1982). Optimization studies for reliable trace metal analysis in sediments by atomic absorption spectrometric methods. Fresenius' Zeitschrift für Analytische Chemie, 313, 395–402.CrossRefGoogle Scholar
  7. Buat-Ménard, P., & Chesselet, R. (1979). Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42, 398–411.CrossRefGoogle Scholar
  8. Carrillo-Chávez, A., Drever, J. J., & Martínez, M. (2000). Arsenic content and groundwater geochemistry of the San Antonio-El Triunfo, Carrizal and Los Planes aquifers in southernmost Baja California, Mexico. Environmental Geology, 39(11), 1295–1303.CrossRefGoogle Scholar
  9. Castro-González, N. P., Calderón-Sánchez, F., Moreno-Rojas, R., Moreno-Ortega, A., & Tamariz-Flores, J. V. (2017). Health risks in rural populations due to heavy metals found in agricultural soils irrigated with wastewater in the alto balsas sub-basin in Tlaxcala and Puebla, Mexico. International Journal of Environmental Health Research, 27(6), 476–486.CrossRefGoogle Scholar
  10. CONAGUA-Comisión Nacional del Agua (2009). Actualización de la disponibilidad media anual de agua subterránea Acuífero (0323) Los Planes estado de Baja California Sur. Diario Oficial de la Federación.Google Scholar
  11. El-Said, G. F., Draz, S. E. O., El-Sadaawy, M. M., & Moneer, A. A. (2014). Sedimentology, geochemistry, pollution status and ecological risk assessment of some heavy metals in surficial sediments of an Egyptian lagoon connecting to the Mediterranean Sea. Journal of Environmental Science and Health, Part A Environmental Science, 49(9), 1029–1044.CrossRefGoogle Scholar
  12. Flores, E.Z., & Del Rosal, A. (2002). Estudio integral para el control de avenidas y recarga artificial del sistema acuífero de la cuenca de San Juan de Los Planes. Technical report. Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, México, 170pp.Google Scholar
  13. Folk, R. L. (1974). Petrology of sedimentary rocks (p. 182). Austin: Hemphills Publications Co..Google Scholar
  14. Golchin, A., Oades, J. M., Skjemstad, J. O., & Clarke, P. (1994). Soil structure and carbon cycling. Australian Journal of Soil Research, 32, 1043–1068.CrossRefGoogle Scholar
  15. Green-Ruiz, C., & Páez-Osuna, F. (2001). Heavy metal anomalies in lagoon sediments related to intensive agriculture in Altata-Ensenada del Pabellón coastal system (SE gulf of California). Environment International, 26, 265–273.CrossRefGoogle Scholar
  16. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001.CrossRefGoogle Scholar
  17. Horowitz, A.J. (1985). A primer on trace metal-sediment chemistry. U.S. Geological Survey water-supply paper, 84–2277, pp 67.Google Scholar
  18. Huang, S. W., & Jin, J. Y. (2008). Status of heavy metals in agricultural soils as affected by different patterns of land use. Environmental Monitoring and Assessment, 139, 317–327.CrossRefGoogle Scholar
  19. INEGI – Instituto Nacional de Estadística y Geografía. (2019). Edafología (mapa interactivo de México). https://www.inegi.org.mx/temas/edafologia/. Accessed 17 July 2019.
  20. Jaffar, S. T. A., Luo, F., Ye, R., Younas, H., Hu, X., & Chen, L. (2017). The extent of heavy metal pollution and their potential health risk in top soils of the massively urbanized district of Shanghai. Archives of Environmental Contamination and Toxicology, 73(3), 362–376.CrossRefGoogle Scholar
  21. Kaur, I., Gupta, A., Pal Singh, B., Sharma, S., & Kumar, A. (2019). Assessment of radon and potentially toxic metals in agricultural soils of Punjab, India. Microchemical Journal , 146, 444–454.CrossRefGoogle Scholar
  22. Li, Z., Ma, Z., Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853.CrossRefGoogle Scholar
  23. Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analysis of marine sediments and suspended particulate matter. Earth-Science Reviews, 32, 235–283.CrossRefGoogle Scholar
  24. Loska, K., Cebula, J., Pelczar, J., Wiechuła, D., & Kwapuliński, J. (1997). Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of cd, cu, and Ni in the Rybnik water reservoir in Poland. Water, Air, and Soil Pollution, 93, 347–365.Google Scholar
  25. Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine Chemistry, 7, 173–206.CrossRefGoogle Scholar
  26. Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analyses. Chemosphere, 65, 863–872.CrossRefGoogle Scholar
  27. Mirzaei, M., Marofi, S., Solgi, E., Abbasi, M., Karimi, R., & Riyahi Bakhtyari, H. R. (2019). Ecological and health risks of soil and grape heavy metals in long-term fertilized vineyards (Chaharmahal and Bakhtiari province of Iran). Environmental Geochemistry and Health, 1–17.Google Scholar
  28. Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine river. Journal of Geology, 2(3), 108–118.Google Scholar
  29. Nagajyoti, P.C., Lee, K.D., & Sreekanth, T.V.M. (2010). Heavy metals, occurrence and toxicity for plants: A review, 8, 199–216.Google Scholar
  30. Nguyen, X. V., Tran, M. H., Le, T. D., & Papenbrock, J. (2017). An assessment of heavy metal contamination on the surface sediment of seagrass beds at the Khanh Hoa coast, Vietnam. Bulletin of Environmental Contamination and Toxicology, 99, 728–734.CrossRefGoogle Scholar
  31. Nziguheba, G., & Smolders, E. (2008). Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Science of the Total Environment, 390, 53–57.CrossRefGoogle Scholar
  32. Perez-Briceño, A. (2009). Elaboración de un modelo hidrogeológico de la Cuenca de San Juan de Los Planes, B.C.S., mediante el uso de un sistema de información geográfica (SIG) y un modelo digital de elevación (MDE). Bachelor degree thesis. Universidad Autónoma de Baja California Sur, La Paz, B.C.S., México.Google Scholar
  33. Posada-Ayala, I. H., Murillo-Jiménez, J., Shumilin, E., Marmolejo-Rodríguez, A. J., & Nava-Sánchez, E. H. (2016). Arsenic from gold mining in marine and stream sediments in Baja California Sur, Mexico. Environment and Earth Science, 75, 996.CrossRefGoogle Scholar
  34. Rauret, G., Rubio, R., López-Sánchez, J. F., & Casassas, E. (1988). Determination and speciation of copper and lead in sediments of a Mediterranean river (river Tenes, Catalonia, Spain). Water Resources, 22(4), 449–455.Google Scholar
  35. Saha, J. K., et al. (2017). Major inorganic pollutants affecting soil and crop quality. In J. K. Saha (Ed.), Soil Pollution - An Emerging Threat to Agriculture (pp. 75–104). Singapore: Springer.CrossRefGoogle Scholar
  36. Schaaf, P., Böhnel, H., & Pérez-Venzor, J. A. (2000). Pre-Miocene palaeogeography of the Los Cabos block, Baja California Sur: Geochronological and palaeomagnetic constraints. Tectonophysics, 318(2000), 53–69.CrossRefGoogle Scholar
  37. SDEMARN- Secretaría de Desarrollo Económico, Medio Ambiente y Recursos Naturales (2016) Datos Básicos de Baja California Sur, in: http://sdemarn.bcs.gob.mx/docs/publicaciones/1_Datos_Basicos_BCS_2016.pdf. Accessed 10 Mar 2019.
  38. SEDESOL- Secretaría de Desarrollo Social (2012). Atlas de riesgos y peligros naturales del municipio de La Paz, B.C.S. 2012. Atlas Nacional de Riesgos, in: http://www.anr.gob.mx/PDFMunicipales/2012/03003_LA_PAZ.pdf. Accessed 03 Nov 2018
  39. SEMARNAT- Secretaría del Medio Ambiente y Recursos Naturales (2000). Norma Oficial Mexicana (NOM-021-RECNAT-2000). Que establece las especificaciones de fertilidad, salinidad, y clasificación de suelos. Estudios, muestreo y análisis. Diario Oficial de la Federación, in: http://dof.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002. Accessed 03 Nov 2018.
  40. SEMARNAT Secretaría del Medio Ambiente y Recursos Naturales (2004). Norma Oficial Mexicana (NOM-147-SEMARNAT/SSA1-2004). Que establece criterios para determinar las concentraciones de remediación de suelos contaminados por arsénico, bario, berilio, cadmio, cromo hexavalente, mercurio, níquel, plata, plomo, selenio, talio y/o vanadio. Diario Oficial de la Federación, in: http://www.dof.gob.mx/nota_detalle.php?codigo=4964569&fecha=02/03/2007. Accessed 10 Nov 2018.
  41. SGM- Servicio Geológico Mexicano (2002). Carta geoquímica 91, San José del Cabo, in: http://www.sgm.gob.mx/CartasPdf/GeoquimicasL.jsp. Accessed 30 Oct 2018.
  42. Sungur, A., Soylak, M., & Ozcan, H. (2019). Fractionation, source identification and risk assessments for heavy metals in soils near a small-scale industrial area (Canakkale-Turkey). Soil and Sediment Contamination, 28(2), 213–227.CrossRefGoogle Scholar
  43. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresunters, 33, 566–575.CrossRefGoogle Scholar
  44. USEPA- United States Environmental Protection Agency. (1989). Risk assessment guidance for superfund. Human health evaluation manual, (part a) (Vol. 1). Washington, D.C.: Office of emergency and remedial response.Google Scholar
  45. Vu, C. T., Lin, C., Shern, C. C., Yeh, G., Le, V. G., & Tran, H. T. (2017). Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecological Indicators, 82, 32–42.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Posgrado en Ciencias de la TierraUniversidad Nacional Autónoma de MéxicoHermosilloMexico
  2. 2.Unidad Académica Mazatlán, Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMexico

Personalised recommendations