Hybrid Carbon Nanochromium Composites Prepared from Chrome-Tanned Leather Shavings for Dye Adsorption

  • Javier A. Arcibar-OrozcoEmail author
  • Bertha S. Barajas-Elias
  • Felipe Caballero-Briones
  • Lilja Nielsen
  • Jose R. Rangel-Mendez


Every year, the leather tanning industry produces substantial quantities of residues such as chrome-tanned leather shavings (CTLS), which contain considerable amounts of Cr(III) salts. The residues have no particular value and under natural conditions can transform into toxic Cr(VI) wastes. The objective of the present work is to evaluate the transformation of these residues into carbon adsorbents at low temperatures (< 600 °C), using ZnCl2 as an activating agent. The pyrolysis temperature and residence times were studied. The materials were characterized and qualified by Acid Black 210 (AB) adsorption. The results indicated that low amounts of chromium oxides (less than 2% of Cr), in the form of 50–200 nm particles, remained after the synthesis procedure. The deposited chromium oxides were present in (II), (III), and (IV) oxidation states. The low preparation temperatures employed prevented further chromium oxidation to Cr(VI). Maximum surface areas of 439 m2/g were obtained. The materials efficiently removed AB (maximum experimental adsorption capacity of 44.4 mg/g) by means of electrostatic interaction caused by the positively charged distribution of the carbons. The adsorption capacity was not affected by temperature, but pH had a mixed effect due to the combination of a shift in surface charge distribution and dye speciation. The results demonstrated that it is possible to obtain a value-added product, i.e., carbons modified with chromium nanoparticles for dye removal, from a hazardous residue of the tanning industry.


Tannery Chrome-tanned leather shavings Activated carbon Adsorption Dye Acid Black 210 Chromium oxides 



Technical assistance from Catalina De la Rosa and Ernesto Ornelas of CIATEC is acknowledged. The authors recognize support from LINAN and LANBAMA National Laboratories at IPICYT, as well as from Ana Iris Maldonado and Dulce Partida for the microscopy analysis and surface area measurements, respectively. FCB acknowledges SIP-IPN for financial support through the 20194931 project. Engineer Sebastian Pacheco at CICATA Altamira is acknowledged for XRD acquisition. XPS analysis was performed by Engineer Wilian Javier Cauich at the National Laboratory of Nano and Biomaterials at CINVESTAV-Merida, sponsored by the following projects: FOMIX-Yucatan, 2008-1081160 and CONACYT LA-2009-01-123913, 292692, 294643, 188345, and 204822.

Funding Information

This work was funded by the CIATEC A.C. (0FIA01602) and by the Ministry for Innovation of Guanajuato (Secretaria de Innovación del Estado de Guanajuato, SICES) through the SICES/058/2018 grant.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no conflict of interest.

Supplementary material

11270_2019_4194_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2613 kb)


  1. Aboulhassan, M. A., Souabi, S., & Yaacoubi, A. (2008). Pollution reduction and biodegradability index improvement of tannery effluents. International journal of Environmental Science and Technology, 5(1), 11–16.CrossRefGoogle Scholar
  2. Abu-Zied, B. M. (2000). Structural and catalytic activity studies of silver/chromia catalysts. Applied Catalysis, A, 198(1), 139–153.CrossRefGoogle Scholar
  3. Apte, A. D., Tare, V., & Bose, P. (2006). Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment. Journal of Hazardous Materials, 128(2), 164–174.CrossRefGoogle Scholar
  4. Arcibar-Orozco, J. A., Avalos-Borja, M., & Rangel-Mendez, J. R. (2012). Effect of phosphate on the particle size of ferric oxyhydroxides anchored onto activated carbon: As(V) removal from water. Environmental Science & Technology, 46(17), 9577–9583.CrossRefGoogle Scholar
  5. Aronniemi, M., Sainio, J., & Lahtinen, J. (2005). Chemical state quantification of iron and chromium oxides using XPS: the effect of the background subtraction method. Surface Science, 578(1), 108–123.CrossRefGoogle Scholar
  6. Bandosz, T. J., & Ania, C. O. (2006). Surface chemistry of activated carbons and its characterization. In T. J. Bandosz (Ed.), Interface Science and Technology (1st ed., pp. 159–229). Kidlington: Elsevier.Google Scholar
  7. Bao, Y., & Zhang, G. (2012). Study of adsorption characteristics of methylene blue onto activated carbon made by Salix psammophila. Energy Procedia, 16, 1141–1146.CrossRefGoogle Scholar
  8. Basegio, T., Haas, C., Pokorny, A., Bernardes, A. M., & Bergmann, C. P. (2006). Production of materials with alumina and ashes from incineration of chromium tanned leather shavings: environmental and technical aspects. Journal of Hazardous Materials, 137(2), 1156–1164.CrossRefGoogle Scholar
  9. Beltrán-Prieto, J. C., Veloz-Rodríguez, R., Pérez-Pérez, M. C., Navarrete-Bolaños, J. L., Vázquez-Nava, E., Jiménez-Islas, H., & Botello-Álvarez, J. E. (2012). Chromium recovery from solid leather waste by chemical treatment and optimisation by response surface methodology. Chemistry and Ecology, 28(1), 89–102.CrossRefGoogle Scholar
  10. Berry, F. J., Costantini, N., & Smart, L. E. (2002). Synthesis of chromium-containing pigments from chromium recovered from leather waste. Waste Management, 22(7), 761–772.CrossRefGoogle Scholar
  11. Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W. M., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717–2730.CrossRefGoogle Scholar
  12. Brown, D., Cunningham, D., & Glass, W. (1968). The infrared and Raman spectra of chromium (III) oxide. Spectrochimica Acta, Part A: Molecular and Biomolecular Spectroscopy, 24(8), 965–968.CrossRefGoogle Scholar
  13. Chebeir, M., & Liu, H. (2016). Kinetics and mechanisms of Cr(VI) formation via the oxidation of Cr(III) solid phases by chlorine in drinking water. Environmental Science & Technology, 50(2), 701–710.CrossRefGoogle Scholar
  14. Chen, G., Weng, W., Wu, D., Wu, C., Lu, J., Wang, P., & Chen, X. (2004). Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon, 42(4), 753–759.CrossRefGoogle Scholar
  15. Chen, X., Chen, X., Cai, S., Chen, J., Xu, W., Jia, H., & Chen, J. (2018). Catalytic combustion of toluene over mesoporous Cr2O3-supported platinum catalysts prepared by in situ pyrolysis of MOFs. Chemical Engineering Journal, 334, 768–779.CrossRefGoogle Scholar
  16. Ciobanu, G., Harja, M., Rusu, L., Mocanu, A. M., & Luca, C. (2014). Acid Black 172 dye adsorption from aqueous solution by hydroxyapatite as low-cost adsorbent. Korean Journal of Chemical Engineering, 31(6), 1021–1027.CrossRefGoogle Scholar
  17. Degenhardt, J., & McQuillan, A. J. (1999). Mechanism of oxalate ion adsorption on chromium oxide-hydroxide from pH dependence and time evolution of ATR-IR spectra. Chemical Physics Letters, 311(3), 179–184.CrossRefGoogle Scholar
  18. Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. Journal of Environmental Management, 85(4), 833–846.CrossRefGoogle Scholar
  19. Eary, L. E., & Rai, D. (1987). Kinetics of chromium(III) oxidation to chromium(VI) by reaction with manganese dioxide. Environmental Science & Technology, 21(12), 1187–1193.CrossRefGoogle Scholar
  20. Erdem, M. (2006). Chromium recovery from chrome shaving generated in tanning process. Journal of Hazardous Materials, 129(1), 143–146.CrossRefGoogle Scholar
  21. Fang, C., Jiang, X., Lv, G., Yan, J., & Deng, X. (2018). Nitrogen-containing gaseous products of chrome-tanned leather shavings during pyrolysis and combustion. Waste Management, 78, 553–558.CrossRefGoogle Scholar
  22. Foo, K. Y., & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156(1), 2–10.CrossRefGoogle Scholar
  23. Food (2018). and Agriculture Organization of the United Nations, Statistics (2013). Accessed 31 June 2018.
  24. Gascón, J., Téllez, C., Herguido, J., & Menéndez, M. (2003). Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: transient kinetic modeling of propene and coke formation. Applied Catalysis, A, 248(1), 105–116.CrossRefGoogle Scholar
  25. Gibot, P., & Vidal, L. (2010). Original synthesis of chromium (III) oxide nanoparticles. Journal of the European Ceramic Society, 30(4), 911–915.CrossRefGoogle Scholar
  26. He, C., & Hu, X. (2011). Anionic dye adsorption on chemically modified ordered mesoporous carbons. Industrial and Engineering Chemistry Research, 50(24), 14070–14083.CrossRefGoogle Scholar
  27. Jordan, E. F., Artymyshyn, B., & Feairheller, S. H. (1981). Polymer–leather composites. IV. Mechanical properties of selected acrylic polymer–leather composites. Journal of Applied Polymer Science, 26(2), 463–487.CrossRefGoogle Scholar
  28. Kantarli, I. C., & Yanik, J. (2010). Activated carbon from leather shaving wastes and its application in removal of toxic materials. Journal of Hazardous Materials, 179(1), 348–356.CrossRefGoogle Scholar
  29. Kolomaznik, K., Adamek, M., Andel, I., & Uhlirova, M. (2008). Leather waste—potential threat to human health, and a new technology of its treatment. Journal of Hazardous Materials, 160(2), 514–520.CrossRefGoogle Scholar
  30. Kong, J., Yue, Q., Huang, L., Gao, Y., Sun, Y., Gao, B., Li, Q., & Wang, Y. (2013a). Preparation, characterization and evaluation of adsorptive properties of leather waste based activated carbon via physical and chemical activation. Chemical Engineering Journal, 221, 62–71.CrossRefGoogle Scholar
  31. Kong, J., Yue, Q., Wang, B., Huang, L., Gao, B., Wang, Y., & Li, Q. (2013b). Preparation and characterization of activated carbon from leather waste microwave-induced pyrophosphoric acid activation. Journal of Analytical and Applied Pyrolysis, 104, 710–713.CrossRefGoogle Scholar
  32. Linares-Solano, A., Martín-Gullon, I., Salinas-Martínez de Lecea, C., & Serrano-Talavera, B. (2000). Activated carbons from bituminous coal: effect of mineral matter content. Fuel, 79(6), 635–643.CrossRefGoogle Scholar
  33. Lindsay, D. R., Farley, K. J., & Carbonaro, R. F. (2012). Oxidation of CrIII to CrVI during chlorination of drinking water. Journal of Environmental Monitoring, 14(7), 1789–1797.CrossRefGoogle Scholar
  34. Liou, T.-H. (2010). Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chemical Engineering Journal, 158(2), 129–142.CrossRefGoogle Scholar
  35. López Valdivieso, A., Reyes Bahena, J. L., Song, S., & Herrera Urbina, R. (2006). Temperature effect on the zeta potential and fluoride adsorption at the α-Al2O3/aqueous solution interface. Journal of Colloid and Interface Science, 298(1), 1–5.CrossRefGoogle Scholar
  36. Louarrat, M., Rahman, A. N., Bacaoui, A., & Yaacoubi, A. (2017). Removal of chromium Cr (Vi) of tanning effluent with activated carbon from tannery solid wastes. American Journal of Physical Chemistry, 6(6), 103.CrossRefGoogle Scholar
  37. Malea, E., Boyatzis, S.C., Kehagia, M. (2010). Cleaning of tanned leather: testing with infra red spectroscopy and SEM-EDAX, Joint Interim-Meeting of Five ICOM. CC Working Groups, Rome, pp. 1.Google Scholar
  38. Manera, C., Tonello, A. P., Perondi, D., & Godinho, M. (2018). Adsorption of leather dyes on activated carbon from leather shaving wastes: kinetics, equilibrium and thermodynamics studies. Environmental Technology, 1-13.Google Scholar
  39. Mwinyihija, M. (2010). Ecotoxicological diagnosis in the tanning industry. New York: Springer.CrossRefGoogle Scholar
  40. Nieto-Delgado, C., & Rangel-Mendez, J. R. (2011). Production of activated carbon from organic by-products from the alcoholic beverage industry: surface area and hardness optimization by using the response surface methodology. Industrial Crops and Products, 34(3), 1528–1537.CrossRefGoogle Scholar
  41. Nieto-Delgado, C., Terrones, M., & Rangel-Mendez, J. R. (2011). Development of highly microporous activated carbon from the alcoholic beverage industry organic by-products. Biomass and Bioenergy, 35(1), 103–112.CrossRefGoogle Scholar
  42. Ola, M., & Nesrine, K. (2010). Utilization of waste leather shavings as filler in paper making. Journal of Applied Polymer Science, 118(3), 1713–1719.Google Scholar
  43. Oliveira, L. C. A., Guerreiro, M. C., Gonçalves, M., Oliveira, D. Q. L., & Costa, L. C. M. (2008). Preparation of activated carbon from leather waste: a new material containing small particle of chromium oxide. Materials Letters, 62(21), 3710–3712.CrossRefGoogle Scholar
  44. Oliveira, L. C., Coura, C. V. Z., Guimarães, I. R., & Gonçalves, M. (2011). Removal of organic dyes using Cr-containing activated carbon prepared from leather waste. Journal of Hazardous Materials, 192(3), 1094–1099.CrossRefGoogle Scholar
  45. Pakhomov, N. A., Kashkin, V. N., Nemykina, E. I., Molchanov, V. V., Nadtochiy, V. I., & Noskov, A. S. (2009). Dehydrogenation of C3–C4 paraffins on Cr2O3/Al2O3 catalysts in fluidized and fixed bed reactors. Chemical Engineering Journal, 154(1), 185–188.CrossRefGoogle Scholar
  46. Pathania, D., Sharma, S., & Singh, P. (2017). Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian Journal of Chemistry, 10, S1445–S1451.CrossRefGoogle Scholar
  47. Pereira, L., & Alves, M. (2012). Dyes—environmental impact and remediation. In A. Malik & E. Grohmann (Eds.), Environmental protection strategies for sustainable development (1st ed., pp. 111–162). Dordrecht: Springer Netherlands.CrossRefGoogle Scholar
  48. Piccin, J. S., Guterres, M., Salau, N. P. G., & Dotto, G. L. (2017). Mass transfer models for the adsorption of Acid Red 357 and Acid Black 210 by tannery solid wastes. Adsorption Science and Technology, 35(3–4), 300–316.CrossRefGoogle Scholar
  49. Rao, J. R., Thanikaivelan, P., Sreeram, K. J., & Nair, B. U. (2002). Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry. Environmental Science & Technology, 36(6), 1372–1376.CrossRefGoogle Scholar
  50. Rock, M. L., James, B. R., & Helz, G. R. (2001). Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environmental Science & Technology, 35(20), 4054–4059.CrossRefGoogle Scholar
  51. Salem, F. Y., Parkerton, T. F., Lewis, R. V., Huang, J. H., & Dickson, K. L. (1989). Kinetics of chromium transformations in the environment. Science of the Total Environment, 86(1), 25–41.CrossRefGoogle Scholar
  52. Sinha, A. K., & Suzuki, K. (2005). Three-dimensional mesoporous chromium oxide: a highly efficient material for the elimination of volatile organic compounds. Angewandte Chemie, International Edition, 44(2), 271–273.CrossRefGoogle Scholar
  53. Swarnalatha, S., Ganesh Kumar, A., Tandaiah, S., & Sekaran, G. (2009). Efficient and safe disposal of chrome shavings discharged from leather industry using thermal combustion. Journal of Chemical Technology and Biotechnology, 84(5), 751–760.CrossRefGoogle Scholar
  54. Van der Merwe, W., Beukes, J., & Van Zyl, P. (2012). Cr (VI) formation during ozonation of Cr-containing materials in aqueous suspension-implications for water treatment. Water SA, 38(4), 505–510.Google Scholar
  55. Van Dyk, J. C., Benson, S. A., Laumb, M. L., & Waanders, B. (2009). Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel, 88(6), 1057–1063.CrossRefGoogle Scholar
  56. Wang, D., He, S., Shan, C., Ye, Y., Ma, H., Zhang, X., Zhang, W., & Pan, B. (2016). Chromium speciation in tannery effluent after alkaline precipitation: isolation and characterization. Journal of Hazardous Materials, 316, 169–177.CrossRefGoogle Scholar
  57. Yılmaz, O., Cem Kantarli, I., Yuksel, M., Saglam, M., & Yanik, J. (2007). Conversion of leather wastes to useful products. Resources, Conservation and Recycling, 49(4), 436–448.CrossRefGoogle Scholar
  58. Yoo, J., & Wachsman, E. D. (2006). Potentiometric NOx sensing behavior of Cr2O3-based sensor and TPR of the sensor element. ECS Transactions, 1(7), 173–184.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.CIATEC A.C. Centro de Innovación Aplicada en Tecnología CompetitivaLeónMexico
  2. 2.Instituto Politécnico Nacional, Materiales y Tecnologías para EnergíaSalud y Medio Ambiente (GESMAT), CICATA AltamiraAltamiraMexico
  3. 3.Department of Biological SciencesKingsborough Community CollegeBrooklynUSA
  4. 4.División de Ciencias AmbientalesInstituto Potosino de Investigación Científica y Tecnológica, A.C.San Luis PotosiMexico

Personalised recommendations