Advertisement

Microalgal–Bacterial Flocs and Extracellular Polymeric Substances: Two Essential and Valuable Products of Integrated Algal Pond Systems

  • Taobat A. Jimoh
  • M. Olajide Keshinro
  • Keith A. CowanEmail author
Article

Abstract

The integrated algal pond system (IAPS) is a passive wastewater treatment technology that can be used to remediate liquid waste from domestic, industrial and agricultural sources. The system exploits the mutualistic interaction between microalgae and bacteria to generate water of a quality suitable for discharge and/or reuse. During the treatment process, biomass in the form of microalgal–bacterial flocs (MaB-flocs) is generated, and this can be harvested and beneficiated in downstream processing. Here, we review literature on MaB-floc and extracellular polymeric substance (EPS) formation and discuss how essential microalgal–bacterial mutualism is at effecting IAPS-based wastewater treatment. Aggregation of microalgae and bacteria into MaB-flocs is clearly an outcome of EPS production by these microorganisms and arises for purposes of chemical and developmental interaction, protection, communication, aggregation and adhesion. The polymeric compounds which form the scaffold of this extracellular matrix comprise polysaccharides, proteins, uronic acid and nucleic acid. Natural EPS can be used as bioflocculant in water purification and in the dewatering and settling of sludge and is therefore an ideal natural replacement for commercially available synthetic polymers. Additionally, EPS are considered high value and can be used in many commercial applications. Thus, and to ensure sustained MaB-floc production in IAPS-based wastewater treatment plants, it is important that correct levels of EPS are maintained to facilitate settling and biomass recovery. Furthermore, it is the associated environmental and operational conditions that most impact EPS production and in turn, MaB-floc formation, and quality of the final IAPS-treated water.

Keywords

Extracellular polymeric substances Flocculation High rate algal oxidation ponds Integrated algae pond systems Microalgal–bacterial flocs Wastewater 

Abbreviations

AIWPS

Advanced integrated wastewater pond system

BOD

Biological oxygen demand

COD

Chemical oxygen demand

EPS

Extracellular polymeric substance

HRAOP

High rate algal oxidation ponds

IAPS

Integrated algal pond system

MaB-flocs

Microalgal–bacterial flocs

MABA

Microalgal–bacterial aggregates

QS

Quorum sensing

TSS

Total suspended solids

Notes

Funding

The research was funded by Rhodes University and a grant from the Water Research Commission (WRC) of South Africa through WRC Project No. 7164 awarded to A.K.C. of Rhodes University. T.A.J. and O.K. acknowledge receipt of doctoral bursaries from EBRU.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

References

  1. Acién, F. G., Gómez-Serrano, C., Morales-Amaral, M. M., Fernández-Sevilla, J. M., & Molina-Grima, E. (2016). Wastewater treatment using microalgae: How realistic a contribution might it be to significant urban wastewater treatment? Applied Microbiology and Biotechnology, 100(21), 9013–9022.Google Scholar
  2. Ahmed, M., Moerdijk-Poortvliet, T. C. W., Wijnholds, A., & Hasnain, S. (2014). Isolation, characterization and localization of extracellular polymeric substances from the cyanobacterium Arthrospira platensis strain MMG-9. European Journal of Phycology, 49(2), 143–150.Google Scholar
  3. An, C., Ma, S. J., Chang, F., & Xue, W. J. (2017). Efficient production of pullulan by Aureobasidium pullulans grown on mixtures of potato starch hydrolysate and sucrose. Brazilian Journal of Microbiology, 48, 180–185.Google Scholar
  4. Aquino, S. F., Gloria, R. M., Silva, S. Q., & Chernicharo, C. A. L. (2009). Quantification of the inert chemical oxygen demand of raw wastewater and evaluation of soluble microbial product production in demo-scale upflow anaerobic sludge blanket reactors under different operational conditions. Water Environment Research, 81(6), 608–616.Google Scholar
  5. Arashiro, L. T., Montero, N., Ferrer, I., Acien, F. G., & Garfi, M. (2018). Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Science of the Total Environment, 622-623, 1118–1130.Google Scholar
  6. Arcila, J. S., & Buitrón, G. (2016). Microalgae-bacteria aggregates: Effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential. Journal of Chemical Technology and Biotechnology, 91, 2862–2870.Google Scholar
  7. Arcila, J. S., & Buitrón, G. (2017). Influence of solar irradiance levels on the formation of microalgae–bacteria aggregates for municipal wastewater treatment. Algal Research, 27, 190–197.Google Scholar
  8. Bajaj, I. B., Survase, S. A., Saudagar, P. S., & Singhal, R. S. (2007). Gellan gum: Fermentative production, downstream processing and applications. Food Technology and Biotechnology, 45(4), 341–354.Google Scholar
  9. Banat, I. M., Puskas, K., Esen, I. I., & Al-Daher, R. (1990). Wastewater treatment and algal productivity in an integrated ponding system. Biological Wastes, 32, 265–275.Google Scholar
  10. Barros, A. I., Goncalves, A. L., Simoes, M., & Pires, J. C. M. (2015). Harvesting techniques applied to microalgae: A review. Renewable and Sustainable Energy Reviews, 41, 1489–1500.Google Scholar
  11. Barros, A. C., Gonçalves, A. L., & Simões, M. (2018). Microalgal/cyanobacterial biofilm formation on selected surfaces: The effects of surface physicochemical properties and culture media composition. Journal of Applied Phycology.  https://doi.org/10.1007/s10811-018-1582-3.Google Scholar
  12. Benemann, J. R., Weissman, J. C., Koopman, B. L., & Oswald, W. J. (1977). Energy production by microbial photosynthesis. Nature, 268(5615), 19–23.Google Scholar
  13. Bramhachari, P. V., & Dubey, S. K. (2006). Isolation and characterization of exopolysaccharide produced by Vibrio harveyi strain VB23. Letters in Applied Microbiology, 43(5), 571–577.Google Scholar
  14. Brownlee, C. (2002). Role of the extracellular matrix in cell–cell signalling: Paracrine paradigms. Current Opinion in Plant Biology, 5(5), 396–401.Google Scholar
  15. Castillo, N. A., Valdez, A. L., & Fariña, J. I. (2015). Microbial production of scleroglucan and downstream processing. Frontiers in Microbiology, 6, 1106.  https://doi.org/10.3389/fmicb.2015.01106.CrossRefGoogle Scholar
  16. Cheng, K. C., Demirci, A., & Catchmark, J. M. (2011). Pullulan: Biosynthesis, production, and applications. Applied Microbiology and Biotechnology, 92, 29–44.Google Scholar
  17. Chong, B. F., Blank, L. M., Mclaughlin, R., & Nielsen, L. K. (2005). Microbial hyaluronic acid production. Applied Microbiology and Biotechnology, 66, 341–351.Google Scholar
  18. Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of Applied Phycology, 28(4), 2367–2377.Google Scholar
  19. Costerton, J. W., Geesey, G. G., & Cheng, K. J. (1978). How bacteria stick. Scientific American, 238, 85–95.Google Scholar
  20. Cowan, A. K. (2010). Bio-refineries: Bioprocess technologies for waste-water treatment, energy and product valorization. In: Tarasenko O., (ed.) Biology, nanotechnology, toxicology and applications: Proceedings of the 4th BioNanoTox conference, AIP 1229, 80–86.Google Scholar
  21. Craggs, R. J. (2005) Advanced integrated wastewater ponds. In: Shilton A (ed.) Pond treatment technology. IWA Scientific and Technical Report Series. IWA, London. 282–310.Google Scholar
  22. Craggs, R. J., Davies-Colley, R. J., Tanner, C. C., & Sukias, J. P. S. (2003a). Advanced ponds systems: Performance with high rate ponds of different depths and areas. Water Science and Technology, 48, 259–267.Google Scholar
  23. Craggs, R., Tanner, C., Sukias, J., & Davies-Colley, R. (2003b). Dairy farm wastewater treatment by an advanced pond system. Water Science and Technology, 48, 291–297.Google Scholar
  24. Craggs, R., Park, J., Heubeck, S., & Sutherland, D. (2014). High rate algal pond systems for low-energy wastewater treatment, nutrient recovery and energy production. New Zealand Journal of Botany, 52(1), 60–s73.Google Scholar
  25. Czaczyk, K., & Myszka, K. (2007). Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Study, 16(6), 799–806.Google Scholar
  26. De Godos, I., Guzman, H. O., Soto, R., García-Encina, P. A., Becares, E., Muñoz, R., & Vargas, V. A. (2011). Coagulation/flocculation-based removal of algal–bacterial biomass from piggery wastewater treatment. Bioresource Technology, 102, 923–927.Google Scholar
  27. De Schryver, P., Crab, R., Defoirdt, T., Boon, N., & Verstraete, W. (2008). The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3–4), 125–137.Google Scholar
  28. Decho, A. W., & Gutierrez, T. (2017). Microbial extracellular polymeric substances (EPSs) in ocean systems. Frontiers in Microbiology, 8, 922.  https://doi.org/10.3389/fmicb.2017.00922.CrossRefGoogle Scholar
  29. Delattre, C., Pierre, G., Laroche, C., & Michaud, P. (2016). Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnology Advances, 34, 1159–1179.Google Scholar
  30. Devi, C. S., Reddy, S., & Mohanasrinivasan, V. (2014). Fermentative production of dextran using Leuconostoc spp. isolated from fermented food products. Frontiers in Microbiology, 9(3), 244–253.Google Scholar
  31. Ding, Z., Bourven, I., Guibaud, G., van Hullebusch, E. D., Panico, A., Pirozzi, F., & Esposito, G. (2015). Role of extracellular polymeric substances (EPS) production in bioaggregation: Application to wastewater treatment. Applied Microbiology and Biotechnology, 99, 9883–9905.Google Scholar
  32. Elnahas, M. O., Amin, M. A., Hussein, M. M. D., Shanbhag, V. C., Ali, A. E., & Wall, J. D. (2017). Isolation, characterization and bioactivities of an extracellular polysaccharide produced from Streptomyces sp. MOE6. Molecules, 22(9), 1396.  https://doi.org/10.3390/molecules22091396.CrossRefGoogle Scholar
  33. Esa, F., Tasirin, S. M., & Abd Rahman, N. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113–119.Google Scholar
  34. Fallowfield, H., & Garrett, M. (1985). The photosynthetic treatment of pig slurry in temperate climatic conditions: A pilot-plant study. Agricultural Wastes, 12, 111–136.Google Scholar
  35. Fariña, J. I., Sinrez, F., Molina, O. E., & Perotti, N. I. (1998). High scleroglucan production by Sclerotium rolfsii: Influence of medium composition. Biotechnology Letters, 20(9), 825–831.Google Scholar
  36. Fialho, A. M., Moreira, L. M., Granja, A. T., Popescu, A. O., Hoffmann, K., & Sá-Correia, I. (2008). Occurrence, production, and applications of gellan: Current state and perspectives. Applied Microbiology and Biotechnology, 79, 889–900.Google Scholar
  37. Flemming, H.-C. (2011). The perfect slime. Colloids and Surfaces B: Biointerfaces, 86, 251–259.Google Scholar
  38. Flemming, H.-C. (2016). EPS—then and now. Microorganisms, 4, 41.  https://doi.org/10.3390/microorganisms4040041.CrossRefGoogle Scholar
  39. Flemming, H. C., & Wingender, J. (2001). Relevance of microbial extracellular polymeric substances (EPSs)—part I: Structural and ecological aspects. Water Science and Technology, 43(6), 1–8.Google Scholar
  40. Galindo, E., Peña, C., Núñez, C., Segura, D., & Espín, G. (2007). Molecular and bioengineering strategies to improve alginate and polydydroxyalkanoate production by Azotobacter vinelandii. Microbial Cell Factories, 6, 7.  https://doi.org/10.1186/1475-2859-6-7.CrossRefGoogle Scholar
  41. García, J., Hernández-Mariné, M., & Mujeriego, R. (2000). Influence of phytoplankton composition on biomass removal from high-rate oxidation lagoons by means of sedimentation and spontaneous flocculation. Water Environment Research, 72(2), 230–237.  https://doi.org/10.2175/106143000X137392.CrossRefGoogle Scholar
  42. Garcia-Gonzalez, J., & Sommerfeld, M. (2016). Biofertilizer and biostimulant properties of the microalga Acutodesmus dimorphus. Journal of Applied Phycology, 28, 1051–1061.Google Scholar
  43. Garcia-Ochoa, F., Santos, V. E., Casa, J. A., & Gomez, E. (2000). Xanthan gum: Production, recovery, and properties. Biotechnology Advances, 18, 549–579.Google Scholar
  44. Ghasemi, Y., Moradian, A., Mohagheghzadeh, A., Shokravi, S., & Morowvat, M. H. (2007). Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: Characterization of antimicrobial activity of Chlorococcus dispersus. Journal of Biological Sciences, 7(6), 904–910.Google Scholar
  45. Glymph, T. (2005). Wastewater microbiology: A handbook for operators. American Water Works Association, Denver, CO.Google Scholar
  46. Golueke, C. G., Oswald, W. J., & Gotaas, H. B. (1957). Anaerobic digestion of algae. Applied and Environmental Biotechnology, 5(1), 47–55.Google Scholar
  47. Gonçalves, A. L., Pires, J. C. M., & Simões, M. (2017). A review on the use of microalgal consortia for wastewater treatment. Algal Research, 24, 403–415.Google Scholar
  48. Grzesik, M., Romanowska-Duda, M., & Kalaji, H. M. (2017). Effectiveness of cyanobacteria and green algae in enhancing the photosynthetic performance and growth of willow (Salix viminalis L.) plants under limited synthetic fertilizers application. Photosynthetica, 55(3), 510–521.Google Scholar
  49. Gupta, S. S., Shastri, Y., & Bhartiya, S. (2017). Integrated microalgae biorefinery: Impact of product demand profile and prospect of carbon capture. Biofuels Bioproducts & Biorefining, 11, 1065–1076.Google Scholar
  50. Gutzeit, G., Lorch, D., Weber, A., Engels, M., & Neis, U. (2005). Bioflocculent algal–bacterial biomass improves low-cost wastewater treatment. Water Science and Technology, 52(12), 9–18.Google Scholar
  51. Guzman, S., Gato, A., Lamela, M., Freire-Garabal, M., & Calleja, J. (2003). Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytotherapy Research, 17(6), 665–670.Google Scholar
  52. Harvey, P. J., Psycha, M., Kokossis, A., Abubakar, A. L., Trivedi, V., Swamy, R., Cowan, A. K., Schroeder, D., Highfield, A., Reinhardt, G., Gartner, S., McNeil, J., Day, P., Brocken, M., Varrie, J. & Ben-Amotz, A. (2012). Glycerol production by halophytic microalgae: Strategy for producing industrial quantities in saline water. 20th European Biomass Conference and Exhibition Proceedings, pp 85–90.Google Scholar
  53. Hay, I. D., Rehman, Z. U., Moradali, M. F., Wang, Y., & Rehm, B. H. A. (2013). Microbial alginate production, modification and its applications. Microbiology Biotechnology, 6(6), 637–650.Google Scholar
  54. Hom, E. F. Y., Aiyar, P., Schaeme, D., Mittag, M., & Sasso, S. (2015). A chemical perspective on microalgal–microbial interactions. Trends in Plant Science, 20(11), 689–693.Google Scholar
  55. Hu, Y., Hao, X., van Loosdrecht, M., & Chen, H. (2017). Enrichment of highly settleable microalgal consortia in mixed cultures for effluent polishing and low-cost biomass production. Water Research, 125, 11–22.Google Scholar
  56. Huang, H., Peng, C., Peng, P., Lin, Y., Zhang, X., & Ren, H. (2019). Towards the biofilm characterization and regulation in biological wastewater treatment. Applied Microbiology and Biotechnology, 103, 1115–1129.Google Scholar
  57. Irie, Y., & Parsek, M. R. (2008). Quorum sensing and microbial biofilms. Current Topics in Microbiology and Immunology, 322, 67–84.Google Scholar
  58. Islam, S. T., & Lam, J. S. (2014). Synthesis of bacterial polysaccharide via the Wzx/Wzy-dependent pathway. Canadian Journal of Microbiology, 60, 697–716.Google Scholar
  59. Jia, H., & Yuan, Q. (2016). Removal of nitrogen from wastewater using microalgae and microalgae–bacteria consortia. Cogent Environmental Science, 2, 1275089.Google Scholar
  60. Jimoh, T. A., & Cowan, A. K. (2017). Extracellular polymeric substance production in high rate algal oxidation ponds. Water Science and Technology, 76(10), 2647–2654.Google Scholar
  61. Jofré, E., Liaudat, J. P., Medeot, D., & Becker, A. (2018). Monitoring succinoglycan production in single Sinorhizobium meliloti cells by Calcofluor white M2R staining and time-lapse microscopy. Carbohydrate Polymers, 181, 918–922.Google Scholar
  62. Jones, K. M. (2012). Increased production of the exopolysaccharide succinoglycan enhances Sinorhizobium meliloti 1021 symbiosis with the host plant Medicago truncatula. Journal of Bacteriology, 194(16), 4322–4331.Google Scholar
  63. Kaplan, D., Christiaen, D., & Arad, S. (1987). Chelating properties of extracellular polysaccharides from Chlorella spp. Applied and Environmental Microbiology, 53(12), 2953–2956.Google Scholar
  64. Kehr, J. C., & Dittmann, E. (2015). Biosynthesis and function of extracellular glycans in cyanobacteria: A review. Life, 5, 164–180.Google Scholar
  65. Kouzuma, A., & Watanabe, K. (2015). Exploring the potential of algae/bacteria interactions. Current Opinion in Biotechnology, 33, 125–129.Google Scholar
  66. Kunacheva, C., & Stuckey, D. C. (2014). Analytical methods for soluble microbial products (SMP) and extracellular polymers (ECP) in wastewater treatment systems: A review. Water Research, 61, 1–18.Google Scholar
  67. Lakaniemi, A.-M., Tuovinen, O. H., & Puhakka, J. A. (2013). Anaerobic conversion of microalgal biomass to sustainable energy carriers—A review. Bioresource Technology, 135, 222–231.Google Scholar
  68. Leaungvutiviroj, C., Ruangphisarn, P., Hansanimitkul, P., Shinkawa, H., & Sasaki, K. (2010). Development of a new biofertilizer with a high capacity for N2 fixation, phosphate and potassium solubilization and auxin production. Bioscience Biotechnology and Biochemistry, 74(5), 1098–1101.Google Scholar
  69. Li, Y., Xu, Y., Liu, L., Jiang, X., Zhang, K., Zheng, T., & Wang, H. (2016). First evidence of bioflocculant from Shinella albus with flocculation activity on harvesting of Chlorella vulgaris biomass. Bioresource Technology, 218, 807–815.Google Scholar
  70. Li, Y., Xu, Y., Zheng, T., & Wang, H. (2017). Flocculation mechanism of the actinomycete Streptomyces sp. hsn06 on Chlorella vulgaris. Bioresource Technology, 239, 137–143.Google Scholar
  71. Li, Y., Xu, Y., Song, R., Tian, C., Liu, L., Zheng, T., & Wang, H. (2018). Flocculation characteristics of a bioflocculant produced by the actinomycete Streptomyces sp. hsn06 on microalgae biomass. BMC Biotechnology, 18, 58.  https://doi.org/10.1186/s12896-018-0471-9.CrossRefGoogle Scholar
  72. Mambo, P. M., Westensee, D. K., Render, D. S., & Cowan, A. K. (2014a). Operation of an integrated algae pond system for the treatment of municipal sewage: A South African case study. Water Science and Technology, 69(12), 2554–2561.Google Scholar
  73. Mambo, P. M., Westensee, D. K., Zuma, B. M., & Cowan, A. K. (2014b). The Belmont Valley integrated algae pond system in retrospect. Water SA, 40(2), 385–393.Google Scholar
  74. Medina, M., & Neis, U. (2007). Symbiotic algal bacterial wastewater treatment: Effect of food to microorganism ratio and hydraulic retention time on the process performance. Water Science and Technology, 55(11), 165–171.Google Scholar
  75. Mehrabadi, A., Craggs, R., & Farid, M. M. (2015). Wastewater treatment high rate algal ponds (WWT HRAP) for low-cost biofuel production. Bioresource Technology, 184, 202–214.Google Scholar
  76. Mehrabadi, A., Farid, M. M., & Craggs, R. (2016). Variation of biomass energy yield in wastewater treatment high rate algal ponds. Algal Research, 15, 143–151.Google Scholar
  77. Mendez, L., Mahdy, A., Ballesteros, M., & González-Fernández, C. (2015). Chlorella vulgaris vs cyanobacterial biomasses: Comparison in terms of biomass productivity and biogas yield. Energy Conversion and Management, 92, 137–142.Google Scholar
  78. Milledge, J. J., & Heaven, S. (2014). Methods of energy extraction from microalgal biomass: A review. Reviews in Environmental Science and Biotechnology, 13, 301–320.Google Scholar
  79. Mishra, A., & Jha, B. (2009). Isolation and characterization of extracellular polymeric substances from microalgae Dunaliella salina under salt stress. Bioresource Technology, 100, 3382–3386.Google Scholar
  80. Moosavi-Nasab, M., Gavahian, M., Yousefi, A. R., & Askari, H. (2010). Fermentative production of dextran using food industry wastes. International Journal of Nutrition and Food Engineering, 4(8), 1921–1923.Google Scholar
  81. More, T. T., Yadav, J. S. S., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2014). Extracellular polymeric substances of bacteria and their potential environmental applications. Journal of Environmental Management, 144, 1–25.Google Scholar
  82. Morris, G. & Harding, S. E. (2009). Polysaccharides, microbial. In: Encyclopedia of microbiology (third edition). Elsevier, 482–494. ISBN 9780123739445.Google Scholar
  83. Natrah, F. M. I., Bossier, P., Sorgeloos, P., Yusoff, F. M., & Defoirdt, T. (2013). Significance of microalgal–bacterial interactions for aquaculture. Reviews in Aquaculture, 5, 1–14.Google Scholar
  84. Neu, T. R., & Marshall, K. C. (1991). Microbial “footprint”—A new approach to adhesive polymers. Biofouling, 3, 101–112.Google Scholar
  85. Nguyen, V. H., Nguyen, H. K., Nguyen, T. D., Pham, T., Dang-Thi, C. H., Song, Y., & Tyagi, R. D. (2017). Sources for isolation of extracellular polymeric substances (EPS) producing bacterial strains which are capable using wastewater sludge as solo substrate. Environmental Technology, 21, 1–10.  https://doi.org/10.1080/09593330.2017.1351488.CrossRefGoogle Scholar
  86. Nouha, K., Hoang, N. V., Song, Y., Tagi, R. D., & Surampalli, R. Y. (2015). Characterization of extracellular polymeric substances (EPS) produced by Cloacibacterium normanense isolated from wastewater sludge for sludge settling and dewatering. Journal of Civil and Environmental Engineering, 5, 191.  https://doi.org/10.4172/2165-784X.1000191.CrossRefGoogle Scholar
  87. O’Donnell, D. R., Fey, S. B., & Cottingham, K. L. (2013). Nutrient availability influences kairomone-induced defenses in Scenedesmus acutus (Chlorophyceae). Journal of Plankton Research, 35(1), 191–200.Google Scholar
  88. Orellana, M. V., Pang, W. L., Durand, P. M., Whitehead, K., & Baliga, N. S. (2013). A role for programmed cell death in the microbial loop. PLoS One, 8(5), e62595.Google Scholar
  89. Oswald, W. J. (1990). Advanced integrated wastewater pond systems. In: Supplying water and saving the environment for six billion people: Proceedings of the 1990 ASCE convention, San Francisco, California, November. New York, American Society of Civil Engineers, Environmental Engineering Division. Pp. 78–85.Google Scholar
  90. Oswald, W. J. (1991). Introduction to advanced wastewater ponding systems. Water Science and Technology, 24(5), 1–7.Google Scholar
  91. Oswald, W. J. (1995). Ponds in the twenty-first century. Water Science and Technology, 31(12), 1–8.Google Scholar
  92. Oswald, W. J., Gotaas, H. B., Ludwig, H. F., & Lynch, V. (1953). Algae symbiosis in oxidation ponds II: Growth characteristics of Chlorella pyrenoidosa cultured in sewage. Sewage and Industrial Wastes, 25, 26–37.Google Scholar
  93. Oswald, W. J., Gotaas, H. B., Golueke, C. G., Kellen, W. R., Gloyna, E. F., & Hermann, E. R. (1957). Algae in waste treatment [with discussion]. Sewage and Industrial Wastes, 29(4), 437–457.Google Scholar
  94. Palaniraj, A., & Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering, 106, 1–12.Google Scholar
  95. Parikh, A., & Madamwar, D. (2006). Partial characterization of extracellular polysaccharides from cyanobacteria. Bioresource Technology, 97, 1822–1827.Google Scholar
  96. Park, J. B. K., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 102, 35–42.Google Scholar
  97. Passos, F., Sole, M., Garcia, J., & Ferrer, I. (2013). Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment. Applied Energy, 108, 168–175.Google Scholar
  98. Passos, F., Gutiérrez, R., Uggetti, E., Garfi, M., García, J., & Ferrer, I. (2017). Towards energy neutral microalgae-based wastewater treatment plants. Algal Research, 28, 235–243.Google Scholar
  99. Peng, Y., Gao, C., Wang, S., Ozaki, M., & Takigawa, A. (2003). Non-filamentous sludge bulking caused by a deficiency of nitrogen in industrial wastewater treatment. Water Science and Technology, 47(11), 289–295.Google Scholar
  100. Phasey, J., Vandamme, D., & Fallowfield, H. J. (2017). Harvesting of algae in municipal wastewater treatment by calcium phosphate precipitation mediated by photosynthesis, sodium hydroxide and lime. Algal Research, 27, 115–120.Google Scholar
  101. Picheth, G. F., Pirich, C. L., Sierakowski, M. R., Woehl, M. A., Sakakibara, C. N., de Souza, C. F., Martin, A. A., da Silva, R., & Freitas, R. A. (2017). Bacterial cellulose in biomedical applications: A review. International Journal of Biological Macromolecules, 104, 97–106.Google Scholar
  102. Poli, A., Donato, P. D., Abbamondi, G. R. & Nicolaus, B. (2011). Synthesis, production and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea, 2011, article ID 693253, 13 pages.  https://doi.org/10.1155/2011/693253 . Google Scholar
  103. Prajapati, S. K., Kaushik, P., Malik, A., & Vijay, V. K. (2013). Phycoremediation and biogas potential of native algal isolates from soil and wastewater. Bioresource Technology, 135, 232–238.Google Scholar
  104. Psycha, M., Pyrgakis, K., Harvey, P. J., Ben-Amotz, A., Cowan, A. K., & Kokossis, A. C. (2014). Design analysis of integrated microalgae biorefineries. Computer Aided Chemical Engineering, 34, 591–596.Google Scholar
  105. Quijano, G., Arcilaa, J. S., & Buitrón, G. (2017). Microalgal–bacterial aggregates: Applications and perspectives for wastewater treatment. Biotechnology Advances, 35, 772–781.Google Scholar
  106. Ramanan, R., Kim, B.-H., Cho, D.-H., Oh, H.-M., & Kim, H.-S. (2016). Algae–bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances, 34, 14–29.Google Scholar
  107. Rose, P., Maart, B., Dunn, K., Rowswell, R., & Britz, P. (1996). High rate algal oxidation ponding for the treatment of tannery effluents. Water Science and Technology, 33, 219–227.Google Scholar
  108. Rose, P., Boshoff, G., Van Hille, R., Wallace, L., Dunn, K., & Duncan, J. (1998). An integrated algal sulphate reducing high rate ponding process for the treatment of acid mine drainage wastewaters. Biodegradation, 9, 247–257.Google Scholar
  109. Rosselló-Mora, R. A., Wagner, M., Amann, R., & Schleifer, K.-H. (1995). The abundance of Zoogloea ramigera in sewage treatment plants. Applied and Environmental Microbiology, 61(2), 702–707.Google Scholar
  110. Rossi, F., & De Philippis, R. (2015). Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life, 5, 1218–1238.Google Scholar
  111. Rühmann, B., Schmid, J., & Sieber, V. (2015). Methods to identify the unexplored diversity of microbial exopolysaccharides. Frontiers in Microbiology, 6(565).  https://doi.org/10.3389/fmicb.2015.00565.
  112. Sarwat, F., Qader, S. A. U., Aman, A., & Ahmed, N. (2008). Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. International Journal of Biological Sciences, 4(6), 379–386.Google Scholar
  113. Schlafer, S., & Meyer, R. L. (2017). Confocal microscopy imaging of the biofilm matrix. Journal of Microbiological Methods, 138, 50–59.Google Scholar
  114. Schmid, J., Sieber, V. & Rehm, B. (2015). Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Frontier in Microbiology, 6 (496). doi:  https://doi.org/10.3389/fmicb.2015.00496.
  115. Sfez, S., Van Den Hende, S., Taelman, S. E., De Meester, S., & Dewulf, J. (2015). Environmental sustainability assessment of a microalgae raceway pond treating aquaculture wastewater: From up-scaling to system integration. Bioresource Technology, 190, 321–331.Google Scholar
  116. Sheng, G.-P., Yu, H.-Q., & Li, X.-Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: A review. Biotechnology Advances, 28, 882–894.Google Scholar
  117. Shi, Y., Huang, J., Zeng, G., Gu, Y., Chen, Y., Hu, Y., Tang, B., Zhou, J., Yang, Y., & Shi, L. (2017). Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere, 180, 396–411.Google Scholar
  118. Shih, I. L., Yu, J. Y., Hsieh, C., & Wu, J. Y. (2009). Production and characterization of curdlan by Agrobacterium sp. Biochemical Engineering Journal, 43, 33–40.Google Scholar
  119. Singh, J. S., Kumar, A., Rai, A. N., & Singh, D. P. (2016). Cyanobacteria: A precious bio-resource in agriculture, ecosystem, and environmental sustainability. Frontiers in Microbiology, 7, 529.Google Scholar
  120. Singha, T. K. (2012). Microbial extracellular polymeric substances: Production, isolation and applications. IOSR Journal of Pharmacy, 2(2), 276–281.Google Scholar
  121. Sobeck, D. C., & Higgins, M. J. (2002). Examination of three theories for mechanisms of cation-induced bioflocculation. Water Research, 36, 527–538.Google Scholar
  122. Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambet, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.Google Scholar
  123. Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2011). Consortia of cyanobacteria/microalgae and bacteria: Biotechnological potential. Biotechnology Advances, 29, 896–907.Google Scholar
  124. Sugumaran, K. R., & Ponnusami, V. (2017). Review on production, downstream processing and characterization of microbial pullulan. Carbohydrate Polymers, 173, 573–591.Google Scholar
  125. Survase, S. A., Saudagar, P. S., & Singhal, R. S. (2007). Enhanced production of scleroglucan by Sclerotium rolfsii MTCC 2156 by use of metabolic precursors. Bioresource Technology, 98, 410–415.Google Scholar
  126. Sutherland, I. W. (2001). The biofilm matrix—an immobilized but dynamic microbial environment. Trends in Microbiology, 9(3), 222–227.Google Scholar
  127. Sutherland, D. L., Howard-Williams, C., Turnbull, M. H., Broady, P. A., & Craggs, R. J. (2013). Seasonal variation in light utilisation, biomass production and nutrient removal by wastewater microalgae in a full-scale high rate algal pond. Journal of Applied Phycology, 26(3), 1317–1329.Google Scholar
  128. Sutherland, D. L., Howard-Williams, C., Turnbull, M. H., Broady, P. A., & Craggs, R. J. (2015). Enhancing microalgal photosynthesis and productivity in wastewater treatment high rate algal ponds for biofuel production. Bioresource Technology, 184, 222–229.Google Scholar
  129. Sze, J. H., Brownlie, J. C., & Love, C. A. (2016). Biotechnological production of hyaluronic acid: A mini review. 3 Biotech, 6, 67(1).  https://doi.org/10.1007/s13205-016-0379-9.
  130. Theocharis, A. D., Skandalis, S. S., Gialeli, C., & Karamanos, N. K. (2016). Extracellular matrix structure. Advanced Drug Delivery Reviews, 97, 4–27.Google Scholar
  131. Tiron, O., Bumbac, C., Manea, E., Stefanescu, M., & Lazar, M. N. (2017). Overcoming microalgae harvesting barrier by activated algae granules. Scientific Reports, 7, 4646.Google Scholar
  132. Tourney, J., & Ngwenya, B. T. (2014). The role of bacterial extracellular polymeric substances in geomicrobiology. Chemical Geology, 386, 115–132.Google Scholar
  133. Trabelsi, I., Slima, S. B., Chaabane, H., & Riadh, B. S. (2015). Purification and characterization of a novel exopolysaccharides produced by Lactobacillus sp. Ca6. International Journal of Biological Macromolecules, 74, 541–546.Google Scholar
  134. Trabelsi, I., Ktari, N., Slima, S. B., Triki, M., Bardaa, S., Mnif, H., & Salah, R. B. (2017). Evaluation of dermal wound healing activity and in vitro antibacterial and antioxidant activities of a new exopolysaccharide produced by Lactobacillus sp. Ca6. International Journal of Biological Macromolecules, 103, 194–201.Google Scholar
  135. Trivedi, J., Mounika, A., Bangwal, D. P., Kaul, S., & Garg, M. O. (2015). Algae based biorefinery—how to make sense? Renewable and Sustainable Energy Reviews, 47, 295–307.Google Scholar
  136. Tseng, B. S., Majerczyk, C. D., Passos da Silva, D., Chandler, J. R., Greenberg, E. P., & Parsek, M. R. (2016). Quorum sensing influences Burkholderia thailandensis biofilm development and matrix production. Journal of Bacteriology, 198(19), 2643–2650.  https://doi.org/10.1128/JB.00047-16.CrossRefGoogle Scholar
  137. Turtin, I., Vatansever, A., & Sanin, F. D. (2006). Phosphorus defficiency and sludge bulking. Environmental Technology, 27(6), 613–621.Google Scholar
  138. Ummalyma, S. B., Gnansounou, E., Sukumaran, R. K., Sindhu, R., Pandey, A., & Sahoo, D. (2017). Bioflocculation: An alternative strategy for harvesting of microalgae—An overview. Bioresource Technology, 242, 227–235.Google Scholar
  139. Unc, A., Monfet, E., Potter, A., Camargo-Valero, M. A., & Smith, S. R. (2017). Note to editor: Microalgae cultivation for wastewater treatment and biofuel production: A bibliographic overview of past and current trends. Algal Research, 24, A2–A7.Google Scholar
  140. Urtuvia, V., Maturana, N., Acevedo, F., Peña, C., & Díaz-Barrera, A. (2017). Bacterial alginate production: An overview of its biosynthesis and potential industrial production. World Journal of Microbiology and Biotechnology, 33(11), 198.  https://doi.org/10.1007/s11274-017-2363-x.CrossRefGoogle Scholar
  141. Van Den Hende, S., Vervaeren, H., Saveyn, H., Maes, G., & Boon, N. (2011). Microalgal bacterial floc properties are improved by a balanced inorganic/organic carbon ratio. Biotechnology and Bioengineering, 108(3), 549–558.Google Scholar
  142. Van Den Hende, S., Carré, E., Cocaud, E., Beelen, V., Boon, N., & Vervaeren, H. (2014a). Treatment of industrial wastewaters by microalgal bacterial flocs in sequencing batch reactors. Bioresource Technology, 161, 245–254.Google Scholar
  143. Van Den Hende, S., Claessens, L., De Muylder, E., Boon, N., & Vervaeren, H. (2014b). Microalgal bacterial flocs originating from aquaculture wastewater treatment as diet ingredient for Litopenaeus vannamei (Boone). Aquaculture Research, 47(4), 1075–1089.Google Scholar
  144. Van Den Hende, S., Laurent, C., & Bégué, M. (2015). Anaerobic digestion of microalgal bacterial flocs from a raceway pond treating aquaculture wastewater: Need for a biorefinery. Bioresource Technology, 196, 184–193.Google Scholar
  145. Van Den Hende, S., Beelen, V., Julien, L., Lefoulon, A., Vanhoucke, T., Coolsaet, C., Sonnenholzner, S., Vervaeren, H., & Rousseau, D. P. L. (2016a). Technical potential of microalgal bacterial floc raceway ponds treating food-industry effluents while producing microalgal bacterial biomass: An outdoor pilot-scale study. Bioresource Technology, 218, 969–979.Google Scholar
  146. Van Den Hende, S., Beyls, J., De Buyck, P.-J., & Rousseau, D. P. L. (2016b). Food-industry-effluent-grown microalgal bacterial flocs as a bioresource for high-value phycochemicals and biogas. Algal Research, 18, 25–32.Google Scholar
  147. Van Hille, R. P., Boshoff, G. A., Rose, P. D., & Duncan, J. R. (1999). A continuous process for the biological treatment of heavy metal contaminated acid mine water. Resources Conservation and Recycling, 27, 157–167.Google Scholar
  148. Vandamme, D., Foubert, I., & Muylaert, K. (2013). Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends in Biotechnology, 31(4), 233–239.Google Scholar
  149. Vanthoor-Koopmans, M., Wijffels, R. H., Barbosa, M. J., & Eppink, M. H. M. (2013). Biorefinery of microalgae for food and fuel. Bioresource Technology, 135, 142–149.Google Scholar
  150. Vázquez, J. A., Pastrana, L., Piñeiro, C., Teixeira, J. A., Pérez-Martín, R. I., & Amado, I. R. (2015). Production of hyaluronic acid by Streptococcus zooepidemicus on protein substrates obtained from Scyliorhinus canicula discards. Marine Drugs, 13, 6537–6549.Google Scholar
  151. Wan, C., Zhao, X.-Q., Guo, S.-L., Alam, M. A., & Bai, F.-W. (2013). Bioflocculant production from Solibacillus silvestris W01 and its application in cost-effective harvest of marine microalga Nannochloropsis oceanica by flocculation. Bioresource Technology, 135, 207–212.Google Scholar
  152. Wan, C., Alam, M. A., Zhao, X.-Q., Zhang, X.-Y., Guo, S.-L., Ho, S.-H., Chang, J.-S., & Bai, F.-W. (2015). Current progress and future prospect of microalgal biomass harvest using various flocculation technologies. Bioresource Technology, 184, 251–257.Google Scholar
  153. Wang, Z.-P., & Zhang, T. (2010). Characterization of soluble microbial products (SMP) under stressful conditions. Water Research, 44, 5499–5509.Google Scholar
  154. Wang, H., Hill, R. T., Zheng, T., Hu, X., & Wang, B. (2014). Effects of bacterial communities on biofuel-producing microalgae: Stimulation, inhibition and harvesting. Critical Reviews in Biotechnology, 36(2), 341–352.Google Scholar
  155. Wang, Z., Wu, J., Zhu, L., & Zhan, X. (2017). Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714. Carbohydrate Polymers, 157, 521–526.Google Scholar
  156. West, T. P., & Peterson, J. L. (2014). Production of the polysaccharide curdlan by an Agrobacterium strain grown on a plant biomass hydrolysate. Canadian Journal of Microbiology, 60, 53–56.Google Scholar
  157. Wieczorek, N., Kucuker, M. A., & Kuchta, K. (2015). Microalgae–bacteria flocs (MaB-flocs) as a substrate for fermentative biogas production. Bioresource Technology, 194, 130–136.Google Scholar
  158. Wingender, J., Neu, T. R., & Flemming, H.-C. (1999). What are bacterial extracellular polymeric substances? In J. Wingender, T. Neu, & H.-C. Flemming (Eds.), Microbial extracellular polymeric substances (pp. 1–19). Heidelberg: Springer.Google Scholar
  159. Xiao, R., & Zheng, Y. (2016). Overview of microalgal extracellular polymeric substances (EPS) and their applications. Biotechnology Advances, 34, 1225–1244.Google Scholar
  160. Young, P., Taylor, M., & Fallowfield, H. J. (2017). Mini-review: High rate algal ponds, flexible systems for sustainable wastewater treatment. World Journal of Microbiology and Biotechnology, 33(6), 117–129.Google Scholar
  161. Yu, L., Wu, J., Liu, J., Zhan, X., Zheng, Z., & Lin, C. C. (2011). Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnology and Bioprocess Engineering, 16, 34–41.Google Scholar
  162. Zhu, L. (2015). Biorefinery as a promising approach to promote microalgae industry: An innovative framework. Renewable and Sustainable Energy Reviews, 41, 1376–1384.Google Scholar
  163. ZoBell, C. E. (1943). The effect of solid surfaces upon bacterial activity. Journal of Bacteriology, 46, 39–56.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute for Environmental Biotechnology (EBRU)Rhodes UniversityMakhanda (Grahamstown)South Africa

Personalised recommendations