Sorption of Copper and Zinc from Aqueous Solution by Metabasalt Residue and its Mineralogical Behavior

  • Luana DalacorteEmail author
  • Pedro Alexandre Varella Escosteguy
  • Edson Campanhola Bortoluzzi


Residues from mining, as metabasalt powder from amethyst exploration, can be used to improve soil properties. Although there is a high-load content of clay minerals in metabasalt, the effects of this residue on cooper (Cu2+) and zinc (Zn2+) sorption and desorption have not been studied. The aim of this work was to evaluate Cu2+ and Zn2+ sorption capacity of metabasalt powder and to discuss the mineralogical behavior facing this phenomenon. This residue sorption capacity was compared to reference clay minerals under two Cu2+ and Zn2+ concentrations (8 and 16 cmolc/kg) in a competitive system (Cu2+ + Zn2+). The sorption capacity was estimated by sequential desorption using cation exchange resin. A survey of mineralogical and Cu2+ and Zn2+ concentrations was performed on metabasalt before and after sorption, and after desorption tests. All materials sorbed higher amounts of Cu2+ than Zn2+. The sorption magnitude decreased in the following order: metabasalt > montmorillonite > illite > kaolinite. Cu2+ and Zn2+ desorption from metabasalt is lower than the standard clay minerals, since the metabasalt sorption sites are expandable interlayers of clay minerals. The relevance and application of our findings are critical in providing information for the management of metabasalt residue, suggesting potential use as a remediation agent in contaminated water, especially those with high Cu2+ and Zn2+ loading. It also suggests that the Cu2+ and Zn2+ enrichment of this residue could potentially be used for converting the metabasalt into a useful source of slow nutrient supply for agricultural soils.


Sorption Interlayer Clay minerals Remedial agent Contaminated water 



The authors acknowledge the financial support accorded (MCTI Edital CT mineral 51/2013, 406763/2013-5).


The Coordination of Improvement of Higher-Level Personnel (Capes) by the Prosuc/Capes fellowship was accorded to L. Dalacorte. The National Research Council (CNPq) by the productivity fellowship was accorded to E.C. Bortoluzzi (306551/2015-2).


  1. Abel, S., Nybom, I., Mäenpäa, K., Hale, S. E., Cornelissen, G., & Akkanen, J. (2017). Mixing and capping techniques for activated carbon based sediment remediation—efficiency and adverse effects for Lumbriculus variegatus. Water Research, 114, 104–112.CrossRefGoogle Scholar
  2. Abreu, A. T., Korchagin, J., Bergmann, M., & Bortoluzzi, E. D. (2014). Nutrient desorption from basaltic rock. In V. M. Benites et al. (Eds.), Technological innovation for a sustainable tropical agriculture (pp. 183–185). Rio de Janeiro: Proceedings.Google Scholar
  3. Al-Rashdi, T. T., & Sulaimanan, H. (2013). Bioconcentration of heavy metals in alfalfa (Medicago sativa) from farm soils around Sohar Industrial Area in Oman. Procedia, 5, 271–278.Google Scholar
  4. Baghernejad, M., Javaheri, F., & Moosavi, A. A. (2015). Adsorption isotherms of copper and zinc in clay minerals of calcareous soils and their effects on X-ray diffraction. Archives of Agronomy and Soil Science, 61(8), 1061–1077.CrossRefGoogle Scholar
  5. Boock, M. V., & Machado Neto, J. G. (2005). Estudos sobre a toxicidade aguda do oxicloreto de cobre para o peixe poecilia reticulata. Boletim do Instituto de Pesca, 31(1), 29–35.Google Scholar
  6. Bortoluzzi, E. C., & Poleto, C. (2013). Methodologies for sediment study: emphasis on the proportion and mineralogical nature of the particles. In C. Poleto & G. H. Merten (Eds.), Sediment quality (pp. 35–90). Porto Alegre: URGS.Google Scholar
  7. Bortoluzzi, E. C., Korchagin J., Moterle, D. F., dos Santos, D. R., & Caner L. (2019). Accumulation and precipitation of Cu and Zn in a Centenarian Vineyard. Soil Science Society of America Journal. Scholar
  8. Bourliva, A., Christophoridis, C., Papadopoulou, L., Giouri, K., Papadopoulos, A., Mitsika, E., & Fytianos, K. (2016). Caracterização, teor de metais pesados ​​e avaliação dos riscos para a saúde das mulheres urbanas do centro histórico da cidade de Salónica, Grécia. Geoquímica Ambiental e Saúde, 38, 1–24.Google Scholar
  9. Brindley, G. W., & Brown, G. (1980). Crystal structures of clays minerals and their X-ray identification. London: Mineralogical Society.CrossRefGoogle Scholar
  10. Brunetto, G., de Melo, G. W. B., Terzano, R., Del Buono, D., Astolfi, S., Tomasi, N., Pii, Y., Mimmo, T., & Cesco, S. (2016). Copper accumulation in vineyard soils: rhizosphere processes and agronomic practices to limit its toxicity. Chemosphere, 162, 293–307.CrossRefGoogle Scholar
  11. Caridi, F., Messina, M., & D’Agostino, M. (2017). An investigation about natural radioactivity, hydrochemistry, and metal pollution in groundwater from Calabrian selected areas, southern Italy. Environmental Geochemistry and Health, 76, 668–679.Google Scholar
  12. Carrado, K. A., & Wasserman, S. R. (1996). Stability of Cu(II)− and Fe(III)−porphyrins on montmorillonite clay: an X-ray absorption study. Chemistry of Materials, 8, 219–225.CrossRefGoogle Scholar
  13. Carter, D. L., Heiman, R., & Gonzales, C. L. (1965). Ethylene glycol monoethyl ether for determining surface area of silicate minerals. Soil Science, 100, 356–360.CrossRefGoogle Scholar
  14. Cheng, H., Zhang, S., Liu, Q., Li, X., & Frost, L. R. (2015). The molecular structure of kaolinite–potassium acetate intercalation complexes: a combined experimental and molecular dynamic simulation study. Applied Clay Science, 116-117, 273–280.CrossRefGoogle Scholar
  15. Choy, J. H., Yoon, J. B., & Jung, H. (2002). Polarization-dependent X-ray absorption spectroscopic study of [Cu(cyclam)]2+-intercalated saponite. The Journal of Physical Chemistry, 106, 11120–11126.CrossRefGoogle Scholar
  16. Dawson, C. R., & Tarplay, W. B. (1951). The copper oxidases. In J. B. Sumner & K. Myrback (Eds.), The enzymes (pp. 454–489). New York: Elsevier.Google Scholar
  17. Dias, N. S., & Blanco, F. F. (2010). Effects of salts on soil and plant. Salinity management in agriculture: basic and applied studies. Fortaleza: INCTSal.Google Scholar
  18. Ely, A., Baudua, M., Baslya, J. P., & Kankoub, M. O. S. A. O. (2009). Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules. Journal of Hazardous Materials, 171, 405–409.CrossRefGoogle Scholar
  19. Falchuk, K. H., Ulpino, L., Mazus, B., & Vallee, B. L. (1977). E. gracilis RNA polymerase I: a zinc metalloenzyme. Biochemical and Biophysical Research Communications, 74, 1206–1212.CrossRefGoogle Scholar
  20. Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis, part 1: physical and mineralogical methods, agronomy monograph (No. 9, 2nd edn.). Madison: American Society of Agronomy.Google Scholar
  21. Gomes, P. C., Fontes, M. P., da Silva, A. G., de Mendoca, S., & Netto, E. (2001). Selectivity sequence and competitive adsorption of heavy metals by Brazilian soils. Soil Science Society of America Journal, 65, 1115–1121.CrossRefGoogle Scholar
  22. Gongadze, E., & Iglic, A. (2015). Asymmetric size of ions and orientational ordering of water dipoles in electric double layer model—an analytical mean-field approach. Electrochimica Acta, 178, 541–545.CrossRefGoogle Scholar
  23. Grattan, J. P., Adams, R. B., Friedman, H., Gilbertson, D. D., Haylock, K. I., Hunt, C. O., & Kent, M. (2016). The first polluted river? Repeated copper contamination of fluvial sediments associated with Late Neolithic human activity in southern Jordan. Science of the Total Environment, 573, 247–257.CrossRefGoogle Scholar
  24. Hartmann, L. A. (2010). Geodos com ametistas formados por água quente no tempo dos dinossauros. Porto Alegre: UFRGS.Google Scholar
  25. Hartmann, L., & Silva, J. T. (2010). Tecnologias no Setor de Gemas, Joias e Mineração: IGEO. Porto Alegre: UFRGS.Google Scholar
  26. He, H. P., Guo, J. G., Xie, X. D., & Peng, J. L. (2001). Location and migration of cations in Cu2+adsorbed montmorillonite. Environment International, 26, 347–352.CrossRefGoogle Scholar
  27. Hoog, D. S., McLaren, R. G., & Swift, R. S. (1993). Desorption of copper from some New Zealand soils. Soil Science Society of America Journal, 57(2), 361–366.CrossRefGoogle Scholar
  28. Hsu, P. H. (1989). Aluminum hydroxides and oxyhydroxides. In J. B. Dixon & B. Weed (Eds.), Minerals in soil environments (pp. 331–378). Madison: Soil Science Society of America.Google Scholar
  29. Kang, F., Ge, Y., Hu, X., Goikavi, C., Waigi, M. G., Gao, Y., & Ling, W. (2016). Understanding the sorption mechanisms of aflatoxin B1 to kaolinite, illite, and smectite clays via a comparative computational study. Journal of Hazardous Materials, 320, 80–87.CrossRefGoogle Scholar
  30. Korchagin, J., Caner, L., & Bortoluzzi, E. (2019). Variability of amethyst mining waste: a mineralogical and geochemical approach to evaluate the potential use in agriculture. Journal of Cleaner Production, 210, 749–758.CrossRefGoogle Scholar
  31. Kukkadapu, R. K., & Kevan, L. (1988). Synthesis and electron spin resonance studies of copper-doped alumina-pillared montmorillonite clay. The Journal of Physical Chemistry A, 92, 6073–6078.CrossRefGoogle Scholar
  32. Li, Z., Schulz, L., Ackley, C., & Fenske, N. (2010). Adsorption of tetracycline on kaolinite with pH-dependent surface charges. Journal of Colloid and Interface Science, 351(1), 254–260.CrossRefGoogle Scholar
  33. Malandrino, M., Abollino, O., Giacomino, A., Aceto, M., & Mentasti, E. (2006). Adsorption of heavy metals on vermiculite: influence of pH and organic ligands. Journal of Colloid and Interface Science, 299, 537–546.CrossRefGoogle Scholar
  34. McKean, S. J., & Warren, G. P. (1996). Determination of phosphate desorption characteristics in soils using successive resin extractions. Communications in Soil Science and Plant Analysis, 27, 2397–2417.CrossRefGoogle Scholar
  35. Meunier, A., Formoso, M. L. L., Patrier, P., & Chies, J. O. (1988). Altération Hydrothermale de roches Volcaniques Liée à la Genése des Améthystes - Bassin du Paraná - Sud du Brésil. Geochimica Brasiliensis, 2, 127–142.Google Scholar
  36. Minkina, T. M., Pinskii, D. L., Bauer, T. V., Nevidomskaya, D. G., Mandzhieva, S. S., & Sushkova, S. N. (2017). Sorption of Cu2+ by chernozems in southern Russia. Journal of Geochemical Exploration, 174, 107–112.CrossRefGoogle Scholar
  37. Morgan, R. K., & Taylor, E. (2004). Copper accumulation in vineyard soils in New Zealand. Environmental Science & Technology, 1, 139–167.Google Scholar
  38. Morton, J. D., Semrau, J. D., & Hayes, K. F. (2001). An X-ray absorption spectroscopy study of the structure and reversibility of copper adsorbed to montmorillonite clay. Geochimica et Cosmochimica Acta, 65, 2709–2722.CrossRefGoogle Scholar
  39. Nascimento, C. W. A., & Fontesr, R. L. F. (2004). Correlação entre características de latossolos e parâmetros de equações de adsorção de cobre e zinco. Revista Brasileira de Ciência do Solo, 28, 965–971.CrossRefGoogle Scholar
  40. Nemeth, T., Mohai, I., & Toth, M. (2005). Adsorption of copper and zinc ions on various montmorillonites: an XRD study. Acta Mineralogica-Petrographica, 46, 29–36.Google Scholar
  41. Qi, S., Xue, Q., Niu, Z., Zhang, Y., & Liu, F. (2016). Chen H. Investigation of Zn2+ and Cd2+. Adsorption performance by different weathering basalts. Water, Air, & Soil Pollution, 227(4), 126–142.CrossRefGoogle Scholar
  42. Rezaei, A., Shayestehfar, M., Hassani, H., & Mohammadi, M. R. T. (2015). Assessment of the metals contamination and their grading by SAW method: a case study in Sarcheshmeh copper complex, Kerman, Iran. Environmental Earth Sciences, 74, 3191–3205.CrossRefGoogle Scholar
  43. Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Washington: USSL.CrossRefGoogle Scholar
  44. Righi, D., Terribile, F., & Petit, S. (1995). Low-charge to high-charge beidellite conversion in a Vertisol from South Italy. Clays and Clay Minerals, 43, 495–502.CrossRefGoogle Scholar
  45. Rybicka, E. H., Calmano, W., & Breeger, A. (1995). Heavy metals sorption/desorption on competing clay minerals: an experimental study. Applied Clay Science, 9, 369–381.CrossRefGoogle Scholar
  46. Sdiri, A., Higashi, T., Chaabouni, R., & Jamoussi, F. (2012). Competitive removal of heavy metals from aqueous solutions by montmorillonitic and calcareous clays. Water, Air, & Soil Pollution, 223, 1191–1204.CrossRefGoogle Scholar
  47. Sheikhhosseini, A., Shirvani, M., & Shariatmadari, H. (2013). Competitive sorption of nickel, cadmium, zinc and copper on palygorskite and sepiolite silicate clay minerals. Geoderma, 192, 249–253.CrossRefGoogle Scholar
  48. Shukla, L. M. (2002). Sorption of Zn and Cd on soil clays. Agrochem, 44, 101–106.Google Scholar
  49. Sipos, P. (2003). Distribution of Cu, Ni, Pb and Zn in natural brown forest soil profiles from the Cserhat Mts., Ne Hungary. Acta Mineralogica-Petrographica, 44, 43–50.Google Scholar
  50. Sodré, F., & Lenzi, E. (2001). Use of physicochemical adsorption models in the study of copper behavior in clay soils. Química Nova, 24, 324–330.CrossRefGoogle Scholar
  51. Spark, K. M., Wells, J. D., & Johnson, B. B. (1995). Characterizing trace metal adsorption on kaolinite. European Journal of Soil Science, 46, 633–640.CrossRefGoogle Scholar
  52. Sparks, D. L. (1995). Sorption phenomena on soils. In D. L. Sparks (Ed.), Environmental soil chemistry (pp. 99–139). San Diego: Academic Press.CrossRefGoogle Scholar
  53. Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.Google Scholar
  54. Stiles, W. (1961). Trace elements in plants, University Press, Cambridge. The Clay Mineral Society (2015) Source Clays. Accessed 15 January 2015.
  55. Tiecher, T., Zafar, M., Mallmann, F. J. K., Bender, M. A., Ciotti, L. H., & dos Santos, D. R. (2014). Animal manure phosphorus characterization by sequential chemical fractionation, release kinetics and 31P-NMR analysis. Revista Brasileira de Ciência do Solo, 38(5), 1506–1514.CrossRefGoogle Scholar
  56. Turan, N. G., Elevli, S., & Mesci, B. (2011). Adsorption of copper and zinc ions on illite: determination of the optimal conditions by the statistical design of experiments. Applied Clay Science, 52, 392–399.CrossRefGoogle Scholar
  57. Valladares, G. S., Azevedo, E. C. D., Camargo, O. A. D., Grego, C. R., & Rastoldo, A. M. C. S. (2009). Spatial variability and availability of copper and zinc in vineyard soils and vicinities. Bragantia, 68, 733–742.CrossRefGoogle Scholar
  58. Vega, F., Covelo, E., & Andrade, M. (2006). Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. Journal of Colloid and Interface Science, 298, 582–592.CrossRefGoogle Scholar
  59. Vitanović, E., Vidaček, Z., Katalinić, M., Kačić, S., & Miloš, B. (2010). Copper in surface layer of Croatian vineyard soils. Journal of Food, Agriculture and Environment, 8(1), 268–274.Google Scholar
  60. Wahba, M. M., & Zaghloul, A. M. (2007). Adsorption characteristics of some heavy metals by some soil minerals. Journal of Applied Sciences Research, 3, 421–426.Google Scholar
  61. Welp, G., & Brümmer, G. W. (1999). Adsorption and solu­bility of ten metals in soil samples of different composition. Journal of Plant Nutrition and Soil Science, 162, 155–161.CrossRefGoogle Scholar
  62. Zhang, Q., Shu, X., Guo, X., Mo, D., Wei, S., & Yang, C. (2016). Effect of ions on sorption of tylosin on clay minerals. RSC Advances, 6, 53175–53181.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate Program in AgronomyUniversity of Passo FundoPasso FundoBrazil
  2. 2.Laboratory of Soil Chemistry and FertilityUniversity of Passo FundoPasso FundoBrazil
  3. 3.Laboratory of Land Use and Natural ResourcesUniversity of Passo FundoPasso FundoBrazil

Personalised recommendations