Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Application of Partially Miscible Solvent System for an Efficient Extraction of Organic Pollutants from Contaminated Sludge

Abstract

A systematic study of extraction of various organic pollutants from highly contaminated solid media (e.g., sludge) by applying a phase transition of a benign partially miscible solvent system composed of water/ethyl acetate/ethanol was conducted. This solvent system possesses an upper critical solution temperature of about 55 °C. The efficiency of the phase transition extraction (PTE) process is found to be higher and much faster compared to those obtained without phase transition (at ambient temperature). The influence of various operating conditions on the process efficiency was investigated. The performance of the phase transition extraction when applied on contaminated sludge is much better than the extraction with ethyl acetate only, although the latter is shown to be a very efficient solvent for extracting various organic contaminants (e.g., pharmaceuticals, persistent organic pollutants) from aqueous solutions. The efficiency of phase transition extraction from the aqueous solution was somewhat lower than that achieved with ethyl acetate, but it shows a clear advantage in the presence of detergents, as emulsion formation is prevented.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Akgerman, A. (1993). Supercritical fluid extraction of contaminants from environmental matrices. Waste Management, 13(5–7), 403–415. https://doi.org/10.1016/0956-053X(93)90073-6.

  2. Avisar, D., Levin, G., & Gozlan, I. (2009). The processes affecting oxytetracycline contamination of groundwater in a phreatic aquifer underlying industrial fish ponds in Israel. Environmental Earth Sciences, 59(4), 939–945. https://doi.org/10.1007/s12665-009-0088-3.

  3. Avisar, D., Horovitz, I., Lozzi, L., Ruggieri, F., Baker, M., Abel, M. L., & Mamane, H. (2013). Impact of water quality on removal of carbamazepine in natural waters by N-doped TiO2 photo-catalytic thin film surfaces. Journal of Hazardous Materials, 244–245, 463–471. https://doi.org/10.1016/j.jhazmat.2012.09.058.

  4. Bamforth, S. M., & Singleton, I. (2005). Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. Journal of Chemical Technology and Biotechnology, 80(7), 723–736. https://doi.org/10.1002/jctb.1276.

  5. Beck, A. J., Johnson, D. L., & Jones, K. C. (1996). The form and bioavailability of non-ionic organic chemicals in sewage sludge-amended agricultural soils. Science of the Total Environment, 185(1–3), 125–149. https://doi.org/10.1016/0048-9697(96)05047-4.

  6. Busetti, F., Heitz, A., Cuomo, M., Badoer, S., & Traverso, P. (2006). Determination of sixteen polycyclic aromatic hydrocarbons in aqueous and solid samples from an Italian wastewater treatment plant. Journal of Chromatography A, 1102(1–2), 104–115. https://doi.org/10.1016/j.chroma.2005.10.013.

  7. Cheng, M., Zeng, G., Huang, D., Yang, C., Lai, C., Zhang, C., & Liu, Y. (2017). Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chemical Engineering Journal, 314, 98–113.

  8. Christensen, N., Batstone, D. J., He, Z., Angelidaki, I., & Schmidt, J. E. (2004). Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 50(9), 237–224. https://doi.org/10.2166/wst.2004.0580.

  9. Chung, N. J., Cho, J. Y., Park, S. W., Park, B. J., Hwang, S. a., & Park, T. I. (2008). Polycyclic aromatic hydrocarbons in soils and crops after irrigation of wastewater discharged from domestic sewage treatment plants. Bulletin of Environmental Contamination and Toxicology, 81(2), 124–127. https://doi.org/10.1007/s00128-008-9398-5.

  10. Dobrinas, S., Stanciu, G., Chirila, E., & Daria, A. (2011). Occurrence of PAHs and PCBs in petrochemical wastewater. Ovidius University Annals of Chemistry, 22(1), 21–26.

  11. Flotron, V., Delteil, C., Padellec, Y., & Camel, V. (2005). Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere, 59(10), 1427–1437. https://doi.org/10.1016/j.chemosphere.2004.12.065.

  12. Gan, S., Lau, E. V., & Ng, H. K. (2009). Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). Journal of Hazardous Materials, 172(2–3), 532–549. https://doi.org/10.1016/j.jhazmat.2009.07.118.

  13. Golan, T., Dahan, G., Ludmer, Z., Brauner, N., & Ullmann, A. (2014). Heavy metals extraction with the SRPTE process from two matrices - industrial sludge and river sediments. Chemical Engineering Journal, 236, 47–58. https://doi.org/10.1016/j.cej.2013.09.062.

  14. Gómez, J., Alcántara, M. T., Pazos, M., & Sanromán, M. Á. (2010). Soil washing using cyclodextrins and their recovery by application of electrochemical technology. Chemical Engineering Journal, 159, 53–57. https://doi.org/10.1016/j.cej.2010.02.025.

  15. Gong, Z., Alef, K., Wilke, B. M., & Li, P. (2005). Dissolution and removal of PAHs from a contaminated soil using sunflower oil. Chemosphere, 58(3), 291–298. https://doi.org/10.1016/j.chemosphere.2004.07.035.

  16. Gratia, E., Weekers, F., Margesin, R., D’Amico, S., Thonart, P., & Feller, G. (2009). Selection of a cold-adapted bacterium for bioremediation of wastewater at low temperatures. Extremophiles, 13(5), 763–768. https://doi.org/10.1007/s00792-009-0264-0.

  17. Harmon, T. C., Burks, G. A., Aycaguer, A.-C., & Jackson, K. (2001). Thermally enhanced vapor extraction for removing PAHs from lampblack-contaminated soil. Journal of Environmental Engineering, 127(November), 986–993.

  18. Jiries, A., Hussain, H., & Lintelmann, J. (2000). Determination of polycyclic aromatic hydrocarbons in wastewater, sediments, sludge and plants in Karak Province, Jordan. Water, Air, and Soil Pollution, 121, 217–228.

  19. Katsoyiannis, A., & Samara, C. (2005). Persistent organic pollutants (POPs) in the conventional activated sludge treatment process:fate and mass balance. Environmental Research, 97(3), 245–257. https://doi.org/10.1016/j.envres.2004.09.001.

  20. Kubatova, A., Jansen, B., Vaudoisot, J. F., & Hawthorne, S. B. (2002). Thermodynamic and kinetic models for the extraction of essential oil from savory and polycyclic aromatic hydrocarbons from soil with hot (subcritical) water and supercritical CO2. Journal of Chromatography A, 975(1), 175–188. https://doi.org/10.1016/S0021-9673(02)01329-8.

  21. Lau, E. V., Gan, S., & Ng, H. K. (2010). Extraction techniques for polycyclic aromatic hydrocarbons in soils. International Journal of Analytical Chemistry, 2010, 1–9. https://doi.org/10.1155/2010/398381.

  22. Lau, E. V., Gan, S., Ng, H. K., & Poh, P. E. (2014). Extraction agents for the removal of polycyclic aromatic hydrocarbons (PAHs) from soil in soil washing technologies. Environmental Pollution, 184, 640–649. https://doi.org/10.1016/j.envpol.2013.09.010.

  23. Lester, Y., Mamane, H., Zucker, I., & Avisar, D. (2013). Treating wastewater from a pharmaceutical formulation facility by biological process and ozone. Water Research, 47(13), 4349–4356. https://doi.org/10.1016/j.watres.2013.04.059.

  24. Lovley, D. R., Woodward, J. C., & Chapelle, F. H. (1994). Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature, 370(6485), 128–131. https://doi.org/10.1038/370128a0.

  25. Ludmer, Z., Golan, T., Ermolenko, E., Brauner, N., & Ullmann, A. (2009). Simultaneous removal of heavy metals and organic pollutants from contaminated sediments and sludges by a novel technology, sediments remediation phase transition extraction. Environmental Engineering Science, 26(2), 419–430. https://doi.org/10.1089/ees.2007.0198.

  26. MacDonald, D. D., Ingersoll, C. G., Berge, T. A., & Berger, T. A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology, 39(1), 20–31. https://doi.org/10.1007/sOM440010075.

  27. Manoli, E., & Samara, C. (2008). The removal of polycyclic aromatic hydrocarbons in the wastewater treatment process: Experimental calculations and model predictions. Environmental Pollution, 151(3), 477–485. https://doi.org/10.1016/j.envpol.2007.04.009.

  28. Masten, S. J., & Davies, S. H. R. (1997). Efficacy of in-situ ozonation for the remediation of PAH contaminated soils. Journal of Contaminant Hydrology, 28(4), 327–335. https://doi.org/10.1016/S0169-7722(97)00019-3.

  29. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). An evaluation of technologies for the heavy metal remediation of dredged sediments. Journal of Hazardous Materials, 85(1), 145–163. https://doi.org/10.1016/S0304-3894(01)00226-6.

  30. Nardella, A., Massetti, F., Sisto, R., & Tomaciello, R. (1999). Clean-up of polluted wet soils by solvent extraction. Environmental Progress, 18(4), 243–249. https://doi.org/10.1002/ep.670180410.

  31. Newman, L. A., & Reynolds, C. M. (2004). Phytodegradation of organic compounds. Current Opinion in Biotechnology, 15(3), 225–230. https://doi.org/10.1016/j.copbio.2004.04.006.

  32. Porevsky, P. Á., Ruiz, H. G., & G, L. H. (2014). Comparison of Soxhlet extraction, ultrasonic bath and focused microwave extraction techniques for the simultaneous extraction of PAH’s and pesticides from sediment samples. Scientia Chromatographica, 6(2), 124–138. https://doi.org/10.4322/sc.2014.026.

  33. Renoldi, F., Lietti, L., Saponaro, S., Bonomo, L., & Forzatti, P. (2003). Thermal desorption of a PAH-contaminated soil: a case study. Transactions on Ecology and the Environment, 64, 1123–1113 https://www.witpress.com/Secure/elibrary/papers/ECO03/ECO03035FU2.pdf.

  34. Reverchon, E., & De Marco, I. (2006). Supercritical fluid extraction and fractionation of natural matter. Journal of Supercritical Fluids. https://doi.org/10.1016/j.supflu.2006.03.020.

  35. Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: a review. Chemical Engineering Journal, 323, 361–380.

  36. Silva, A., Delerue-Matos, C., & Fiuza, A. (2005). Use of solvent extraction to remediate soils contaminated with hydrocarbons. Journal of Hazardous Materials, 124(1–3), 224–229. https://doi.org/10.1016/j.jhazmat.2005.05.022.

  37. Song, Y. F., Wilke, B.-M., Song, X. Y., Gong, P., Zhou, Q. X., & Yang, G. F. (2006). Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation. Chemosphere, 65(10), 1859–1868. https://doi.org/10.1016/j.chemosphere.2006.03.076.

  38. Song, W., Li, J., Zhang, W., Hu, X., & Wang, L. (2012). An experimental study on the remediation of phenanthrene in soil using ultrasound and soil washing. Environmental Earth Sciences, 66(5), 1487–1496. https://doi.org/10.1007/s12665-011-1388-y.

  39. Stevens, J. L., Northcott, G. L., Stern, G. A., Tomy, G. T., & Jones, K. C. (2003). PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks, and polychlorinated n-alkanes in U.K. sewage sludge: survey results and implications. Environmental Science and Technology, 37(3), 462–467. https://doi.org/10.1021/es020161y.

  40. Szolar, O. H. J., Rost, H., Hirmann, D., Hasinger, M., Braun, R., & Loibner, A. P. (2004). Sequential supercritical fluid extraction (SSFE) for estimating the availability of high molecular weight polycyclic aromatic hydrocarbons in historically polluted soils. Journal of Environmental Quality, 33(1), 80–88 http://www.ncbi.nlm.nih.gov/pubmed/14964361.

  41. Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1–31. https://doi.org/10.1155/2011/939161.

  42. Tian, W., Bai, J., Liu, K., Sun, H., & Zhao, Y. (2012). Occurrence and removal of polycyclic aromatic hydrocarbons in the wastewater treatment process. Ecotoxicology and Environmental Safety, 82, 1–7. https://doi.org/10.1016/j.ecoenv.2012.04.020.

  43. Ukiwe, L. N., Egereonu, U. U., Njoku, P. C., Nwoko, C. I. a., & Allinor, J. I. (2013). Polycyclic aromatic hydrocarbons degradation techniques: a review. International Journal of Chemistry, 5(4), 43–55. https://doi.org/10.5539/ijc.v5n4p43.

  44. Ullmann, A., Ludmer, Z., & Shinnar, R. (1995). Phase transition extraction using solvent mixtures with critical point of miscibility. AICHE Journal, 41(3), 488–500. https://doi.org/10.1002/aic.690410307.

  45. Ullmann, A., Brauner, N., Vazana, S., Katz, Z., Goikhman, R., Seemann, B., Marom, H., & Gozin, M. (2013). New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media. Journal of Hazardous Materials, 260(December 2016), 676–688. https://doi.org/10.1016/j.jhazmat.2013.06.027.

  46. Vidali, M. (2001). Bioremediation - an overview. Pure and Applied Chemistry, 73(7), 1163–1172. https://doi.org/10.1351/pac200173071163.

  47. Wang, X., Yu, X., & Bartha, R. (1990). Effect of bioremediation on polycyclic aromatic hydrocarbon residues in soil. Environmental Science & Technology, 24(7), 1086–1089. https://doi.org/10.1021/es00077a020.

  48. Wang, W., Meng, B., Lu, X., Liu, Y., & Tao, S. (2007). Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: a comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Analytica Chimica Acta, 602(2), 211–222. https://doi.org/10.1016/j.aca.2007.09.023.

  49. White, P. A., & Claxton, L. D. (2004). Mutagens in contaminated soil: a review. Mutation Research, Reviews in Mutation Research, 567(2), 227–345. https://doi.org/10.1016/j.mrrev.2004.09.003.

  50. Zhou, W., & Zhu, L. (2007). Efficiency of surfactant-enhanced desorption for contaminated soils depending on the component characteristics of soil-surfactant–PAHs system. Environmental Pollution, 147(1), 66–73. https://doi.org/10.1016/j.envpol.2006.08.018.

Download references

Acknowledgements

The authors thank Mrs. Zhanna Katz and Mr. Alon Riani for the assistance in conducting the experiments.

Funding Information

This study is funded by the Ministry of Science, Technology and Space (grant number 3-11011/2) and the Research Authority of Ariel University (Israel).

Author information

Correspondence to Faina Nakonechny.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Fig. S1

(PDF 275 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakonechny, F., Avisar, D., Ludmer, Z. et al. Application of Partially Miscible Solvent System for an Efficient Extraction of Organic Pollutants from Contaminated Sludge. Water Air Soil Pollut 230, 86 (2019). https://doi.org/10.1007/s11270-019-4132-y

Download citation

Keywords

  • Extraction
  • Partially miscible solvents
  • Organic pollutants
  • Soil remediation
  • Micro pollutants