Advertisement

High Catalytic Activity of Fe3−xCuxO4/Graphene Oxide (0 ≤ x ≤ 0.1) Nanocomposites as Heterogeneous Fenton Catalysts for p-Nitrophenol Degradation

  • Mingwang Liu
  • Zhenzhen Jia
  • Peng Li
  • Yunfang LiuEmail author
  • Mengjia Zhao
  • Yizi Yang
  • Qigu Huang
  • Changyuan Yu
Article
  • 83 Downloads

Abstract

In order to improve the catalytic properties of Fe3O4 nanoparticles in wastewater treatment, the Cu-doped Fe3O4/graphene oxide (Fe3−xCuxO4/GO) nanocomposites were prepared by a modified co-precipitation method and used as heterogeneous catalyst for p-Nitrophenol (p-NP) degradation. The effect of the GO and Cu contents in the nanocomposites was investigated. Compared with the unsupported Fe3O4 nanoparticles, the Fe3O4/GO nanocomposites have obviously improved catalytic performance, especially for the nanocomposite with 6.25 wt.% of the GO content. Furthermore, the catalytic efficiency is greatly improved by doping Cu in the nanocomposite. The Fe3−xCuxO4/GO nanocomposite achieves the best catalytic property in our catalyst system when the x value is about 0.075. Under the optimal reaction condition (0.8 g L−1 of catalyst dosage, 15 mmol L−1 of initial H2O2 concentration, 3.0 of pH value, and 30 °C of temperature), the p-NP conversion and chemical oxygen demand removal efficiencies in 120 min for the Fe2.925Cu0.075O4/GO nanocomposite are about 98.4% and 74.7%, respectively. And the p-NP conversion efficiency is still as high as 96.2% after four recycles under the optimum condition. The results clearly show that the Fe2.925Cu0.075O4/GO nanocomposite has outstanding catalytic properties for the p-NP degradation.

Keywords

Magnetite nanocomposite Graphene oxide Cu doping Heterogeneous Fenton catalyst Wastewater treatment 

Notes

Funding Information

This study is financially supported by the National Natural Science Foundation of China (Grant Nos. 21174011 and U1462102).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

11270_2019_4121_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2612 kb)

References

  1. Bahadur, A., Saeed, A., Shoaib, M., Lqbal, S., Bashir, M. I., Waqas, M., Hussain, M. N., & Abbas, N. (2017). Eco-friendly synthesis of magnetite (Fe3O4) nanoparticles with tunable size: Dielectric, magnetic, thermal and optical studies. Materials Chemistry & Physics, 198, 229–235.CrossRefGoogle Scholar
  2. Barros, W. R. P., Steter, J. R., Lanza, M. R. V., & Tavares, A. C. (2016). Catalytic activity of Fe3−xCuxO4, (0 ≤ x ≤ 0.25) nanoparticles for the degradation of Amaranth food dye by heterogeneous electro-Fenton process. Applied Catalysis B Environmental, 180, 434–441.CrossRefGoogle Scholar
  3. Bokare, A. D., & Choi, W. Y. (2014). Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. Journal of Hazardous Materials, 275, 121–135.CrossRefGoogle Scholar
  4. Chen, H. H., Yang, M., Tao, S., & Chen, G. W. (2017). Oxygen vacancy enhanced catalytic activity of reduced Co3O4 towards p-nitrophenol reduction. Applied Catalysis B Environmental, 209, 648–656.CrossRefGoogle Scholar
  5. Costa, R. C., Lelis, M. F., Oliveira, L. C., Fabris, J. D., Ardisson, J. D., Rios, R. R., Silva, C. N., & Lago, R. M. (2006). Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions. Journal of Hazardous Materials, 129, 171–178.CrossRefGoogle Scholar
  6. Gao, Y. W., Wang, Y., & Zhang, H. (2015). Removal of rhodamine B with Fe-supported bentonite as heterogeneous photo-Fenton catalyst under visible irradiation. Applied Catalysis B Environmental, 178, 29–36.CrossRefGoogle Scholar
  7. Gonzalez-Olmos, R., Martin, M. J., Georgi, A., Kopinke, F. D., Oller, I., & Malato, S. (2012). Fe-zeolites as heterogeneous catalysts in solar Fenton-like reactions at neutral pH. Applied Catalysis B Environmental, 125(3), 51–58.CrossRefGoogle Scholar
  8. Guo, S., Zhang, G. K., Guo, Y. D., & Yu, J. C. (2013). Graphene oxide–Fe2O3 hybrid material as highly efficient heterogeneous catalyst for degradation of organic contaminants. Carbon, 60(14), 437–444.CrossRefGoogle Scholar
  9. He, G. Y., Liu, W. F., Sun, X. Q., Chen, Q., Wang, X., & Chen, H. Q. (2013). Fe3O4@graphene oxide composite: A magnetically separable and efficient catalyst for the reduction of nitroarenes. Materials Research Bulletin, 48(5), 1885–1890.CrossRefGoogle Scholar
  10. Huang, H. H., Lu, M. C., & Chen, J. N. (2001). Catalytic decomposition of hydrogen peroxide and 2-chlorophenol with iron oxides. Water Research, 35(9), 2291–2299.CrossRefGoogle Scholar
  11. Kakavandi, B., Takdastan, A., Jaafarzadeh, N., Azizi, M., Mirzaei, A., & Azari, A. (2016). Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization by a response surface method. Journal of Photochemisrty & Photobiology A Chemistry, 314(1), 178–188.CrossRefGoogle Scholar
  12. Kwan, W. P., & Voelker, B. M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environ Science & Technology, 37(6), 1150–1158.CrossRefGoogle Scholar
  13. Magalhães, F., Pereira, M. C., Botrel, S. E. C., Fabris, J. D., Macedo, W. A., Mendonca, R., Lago, R. M., & Oliveira, L. C. A. (2007). Cr-containing magnetites Fe3−xCrxO4: The role of Cr3+ and Fe2+ on the stability and reactivity towards H2O2 reactions. Applied Catalysis A General, 332(1), 115–123.CrossRefGoogle Scholar
  14. Malik, P. K., & Saha, S. K. (2003). Oxidation of direct dyes with hydrogen peroxide using ferrous ion as catalyst. Separation and Purification Technology, 31, 241–250.CrossRefGoogle Scholar
  15. Matta, R., Hanna, K., & Chiron, S. (2007). Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Science of the Total Environment, 385(1), 242–251.CrossRefGoogle Scholar
  16. Menini, L., Pereira, M. C., Parreira, L. A., Fabris, J. D., & Gusevskaya, E. V. (2008). Cobalt-and manganese-substituted ferrites as efficient single-site heterogeneous catalysts for aerobic oxidation of monoterpenic alkenes under solvent-free conditions. Journal of Catalysis, 254(2), 355–364.CrossRefGoogle Scholar
  17. Moura, F. C., Araujo, M. H., Costa, R. C., Fabris, J. D., Ardisson, J. D., Macedo, W. A., & Lago, R. M. (2005). Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites. Chemosphere, 60(8), 1118–1123.CrossRefGoogle Scholar
  18. Nejad, M. A., & Jonsson, M. (2004). Reactivity of hydrogen peroxide towards Fe3O4, Fe2CoO4, and Fe2NiO4. Journal of Nuclear Materials, 334(1), 28–34.CrossRefGoogle Scholar
  19. Pereira, M. C., Oliveira, L. C. A., & Murad, E. (2012). Iron oxide catalysts: Fenton and Fenton-like reactions—A review. Clay Minerals, 47(3), 285–302.CrossRefGoogle Scholar
  20. Pugazhenthiran, N., Sathishkumar, P., Murugesan, S., & Anandan, S. (2011). Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles. Chemical Engineering Journal, 168(3), 1227–1233.CrossRefGoogle Scholar
  21. Sun, L., & Fugetsu, B. (2013). Mass production of graphene oxide from expanded graphite. Materials Letters, 109(1), 207–210.CrossRefGoogle Scholar
  22. Tian, X. J., Liu, Y. F., Chi, W. D., Wang, Y., Yue, X. Z., Huang, Q. G., & Yu, C. Y. (2017). Catalytic degradation of phenol and p-Nitrophenol using Fe3O4/MWCNT nanocomposites as heterogeneous Fenton-like catalyst. Water, Air, & Soil Pollution, 228, 297.CrossRefGoogle Scholar
  23. Ullah, K., Ye, S., Zhu, L., Meng, Z. D., Sarkar, S., & Oh, W. C. (2014). Microwave assisted synthesis of a noble metal-graphene hybridphotocatalyst for high efficient decomposition of organicdyes under visible light. Materials Science and Engineering B, 180, 20–26.CrossRefGoogle Scholar
  24. Wan, D., Li, W. B., Wang, G. H., Lu, L. L., & Wei, X. B. (2016). Degradation of p-Nitrophenol using magnetic Fe0/Fe3O4/coke composite as a heterogeneous Fenton-like catalyst. Science of the Total Environment, 574, 1326–1334.CrossRefGoogle Scholar
  25. Wang, S. B. (2008). A comparative study of Fenton and Fenton-like reaction kinetics in decolourisation of wastewater. Dyes & Pigments, 76, 714–720.CrossRefGoogle Scholar
  26. Wang, N. N., Chen, J. Q., Zhao, Q., & Xu, H. (2017a). Study on preparation conditions of coal fly ash catalyst and catalytic mechanism in a heterogeneous Fenton-like process. RSC Advances, 7(83), 52524–52532.CrossRefGoogle Scholar
  27. Wang, N. N., Zhao, Q., & Zhang, A. L. (2017b). Catalytic oxidation of organic pollutants in wastewater via a Fenton-like process under the catalysis of HNO3-modified coal fly ash. RSC Advances, 7(44), 27619–27628.CrossRefGoogle Scholar
  28. Wu, Y., Luo, H. J., Wang, H., Zhang, L., Liu, P. P., & Feng, L. Q. (2014). Fast adsorption of nickel ions by porous graphene oxide/sawdust composite and reuse for phenol degradation from aqueous solutions. Journal of Colloid & Interface Science, 436, 90–98.CrossRefGoogle Scholar
  29. Xu, H. Y., Shi, T. N., Zhao, H., Jin, L. G., Wang, F. C., Wang, C. Y., & Qi, S. Y. (2016). Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: Process optimization by response surface methodology. Frontiers of Materials Science, 10(1), 45–55.CrossRefGoogle Scholar
  30. Yang, S. J., He, H. P., Wu, D. Q., Chen, D., Liang, X. L., Qin, Z. H., Fan, M. D., & Zhu, J. X. (2009). Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3−xTixO4 (0≤x ≤0.78) at neutral pH values. Applied Catalysis B Environmental, 89, 527–535.CrossRefGoogle Scholar
  31. Yu, L., Chen, J. D., Liang, Z., Xu, W. C., Chen, L. M., & Ye, D. Q. (2016). Degradation of phenol using Fe3O4-GO nanocomposite as a heterogeneous photo-Fenton catalyst. Separation & Purification Technology, 171, 80–87.CrossRefGoogle Scholar
  32. Zhang, S. X., Zhao, X. L., Niu, H. Y., Shi, Y. L., Cai, Y. Q., & Jiang, G. B. (2009). Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds. Journal of Hazardous Materials, 167, 560–566.CrossRefGoogle Scholar
  33. Zhao, S. F., Ma, H. J., Wang, M., Cao, C. Q., Xiong, J., Xu, Y. S., & Yao, S. D. (2010). Role of primary reaction initiated by 254 nm UV light in the degradation of p-nitrophenol attacked by hydroxyl radicals. Photochemical & Photobiological Sciences: Official Journal of the European Photochemistry Association and the European Society for Photobiology, 9(5), 710–715.CrossRefGoogle Scholar
  34. Zhu, S. M., Dong, B. Z., Yu, Y. H., Bu, L. J., Deng, J., & Zhou, S. Q. (2017). Heterogeneous catalysis of ozone using ordered mesoporous Fe3O4 for degradation of atrazine. Chemical Engineering Journal, 328, 527–535.CrossRefGoogle Scholar
  35. Zubir, N. A., Yacou, C., Motuzas, J., Zhang, X., & Costa, J. C. D. D. (2014). Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Scientific Reports, 4, 1–8.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Material Science and TechnologyBeijing University of Chemical TechnologyBeijingChina
  2. 2.Key Laboratory of carbon fiber and functional polymers Ministry of EducationBeijing University of Chemical TechnologyBeijingChina
  3. 3.School of Life Science and TechnologyBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations