Impacts of Identified Bacterium Ensifer adhaerens on Microcystis aeruginosa and Subsequent Microcystin Release

  • Yuanyuan Wang
  • Huixian Li
  • Qianlong Fan
  • Jingjing Wei
  • Xiaoyu Wang
  • Xiaoxue Jiang
  • Wenwen Zhang
  • Wenyan LiangEmail author


The release of microcystin and dissolved organic matter (DOM) during algae-lysing process draws much attention. In this study, Ensifer adhaerens (bacterium r23) was screened for algicidal activity against Microcystis aeruginosa (MA). The effects of dosage (2.04 × 106, 3.90 × 106, and 7.15 × 106 CFU ml−1) and dosing modes (single, double, and quadruple treatments totaling 7.15 × 106 CFU ml−1) on the release of microcystin-LR (MC-LR) and DOM were investigated. Besides cell density, intra/extra-cellular, and total MC-LR were measured during the lysing treatment. The DOM components were analyzed by parallel factor analysis (PARAFAC). Results show that the lowest dosage (2.04 × 106 CFU ml−1) not only stimulated MA growth during the initial 4 days but also triggered the production of more toxins, resulting in higher total MC-LR than the controls on 2–16 days. The higher dosages suppressed MA growth and MC-LR production simultaneously, and the total MC-LR content was substantially lower than those of the controls during the whole experimental period. The total MC-LR for the double and quadruple treatments were lower than the controls after 30-day treatment, but still higher than the single dosage. Both intracellular and extracellular DOM (IDOM, EDOM) of MA had five components, namely tyrosine-like (C1), tryptophan-like (C2 and C3), fulvic acid-like (C4), and humic acid-like (C5) substances. C1 and C3 in the EDOM resulted from MA lysis and increased along with the treatment. C2 in the EDOM came from the nutrient broth and could be consumed by r23. C4 and C5 in the EDOM mainly resulted from the growth of r23.


Microcystis aeruginosa Ensifer adhaerens Algicidal bacteria Microcystin-LR Algal organic matter (AOM) 



We thank editors for revising and editing this paper. And we also thank the anonymous re-viewers for their helpful and constructive comments that improved the manuscript substantially.

Funding Information

This work is supported by the Chinese National Natural Science Foundation (51672028), Fundamental Research Funds for the Central Universities (2015ZCQ-HJ-02), and the Funds from Shenzhen Techand Ecology & Environment Co., LTD (THRD004).

Supplementary material

11270_2019_4117_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1068 kb)


  1. Alamri, S. A., & Mohamed, Z. A. (2013). Selective inhibition of toxic cyanobacteria by β-carboline-containing bacterium Bacillus flexus isolated from Saudi freshwaters. Saudi Journal of Biological Sciences, 20, 357–363.Google Scholar
  2. An, X. L., Zhang, B. Z., Zhang, H. J., Li, Y., Zheng, W., Yu, Z. M., Fu, L. J., & Zheng, T. L. (2015). Discovery of an algicidal compound from Brevibacterium sp. BS01 and its effect on a harmful algal bloom-causing species, Alexandrium tamarense. Frontiers in Microbiology, 6, 1235.Google Scholar
  3. Beversdorf, L. J., Miller, T. R., & Mcmahon, K. D. (2013). The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake. PLoS One, 8(2), e56103.Google Scholar
  4. Buchanan, R. E., & Bergey, N. E. (1975). Bergey’s manual of meterminative bacteriology (8th eds). Williams & Wilkins company, 741–751.Google Scholar
  5. Chen, L., Chen, J., Zhang, X. Z., & Xie, P. (2016). A review of reproductive toxicity of microcystins. Journal of Hazardous Materials, 301, 381–399.Google Scholar
  6. Chen, Z. R., Zheng, W., Yang, L. X., Boughner, L. A., Tian, Y., Zheng, T. L., & Xu, H. (2017). Lytic and chemotactic features of the plaque-forming bacterium KD531 on Phaeodactylum tricornutum. Frontiers in Microbiology, 8, 2581.Google Scholar
  7. Dai, H. B., Xu, J. Y., Chen, Z., Yang, C. H., Hong, W. C., & Man, H. L. (2015). Chlorination of Microcystis aeruginosa: cell lyses and incomplete degradation of bioorganic substance. Desalination and Water Treatment, 138(5), 1–9.Google Scholar
  8. Dittmann, E., Gugger, M., Sivonen, K., & Fewer, D. P. (2015). Natural product biosynthetic diversity and comparative genomics of the cyanobacteria. Trends in Microbiology, 23(10), 642–652.Google Scholar
  9. Du, Y. P., Ye, J., Wu, L., Yang, C. Y., Wang, L. M., & Hu, X. J. (2017). Physiological effects and toxin release in Microcystis aeruginosa and Microcystis viridis exposed to herbicide fenoxaprop-p-ethyl. Environmental Science and Pollution Research, 24, 7752–7763.Google Scholar
  10. Gao, Y. N., Ge, F. J., Zhang, L. P., He, Y., Lu, Z. Y., Zhang, Y. Y., Liu, B. Y., Zhou, Q. H., & Wu, Z. B. (2017). Enhanced toxicity to the cyanobacterium Microcystis aeruginosa by low-dosage repeated exposure to the allelochemical N-phenyl-1-naphthylamine. Chemosphere, 174, 732–738.Google Scholar
  11. Guan, C. W., Guo, X. Y., Li, Y., Zhang, H. J., Lei, X. Q., Cai, G. J., Guo, J. J., Yu, Z. M., & Zheng, T. L. (2015). Photoinhibition of Phaeocystis globosa resulting from oxidative stress induced by a marine algicidal bacterium Bacillus sp. LP-10. Scientific Reports, 5, 17002.Google Scholar
  12. Guo, X. L., Liu, X. L., Pan, J. L., & Yang, H. (2015). Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa. Scientific Reports, 5, 14720.Google Scholar
  13. Jiang, T., Chen, X. S., Wang, D. Y., Liang, J., Bai, W. Y., Zhang, C., Wang, Q. L., & Wei, S. Q. (2018). Dynamics of dissolved organic matter (DOM) in a typical inland lake of the three gorges reservoir area: fluorescent properties and their implications for dissolved mercury species. Journal of Environmental Management, 206, 418–429.Google Scholar
  14. Kang, Y. H., Park, C. S., & Han, M. S. (2012). Pseudomonas aeruginosa UCBPP-PA14 a useful bacterium capable of lysing Microcystis aeruginosa cells and degrading microcystins. Journal of Applied Phycology, 24(6), 1517–1525.Google Scholar
  15. Kim, Y. S., Son, H. J., & Jeong, S. Y. (2015). Isolation of an algicide from a marine bacterium and its effects against the toxic dinoflagellate Alexandrium catenella and other harmful algal bloom species. Journal of Microbiology, 53(8), 511–517.Google Scholar
  16. Kim, B. H., Sang, M., Hwang, S. J., & Han, M. S. (2008). In situ bacterial mitigation of the toxic cyanobacterium Microcystis aeruginosa implications for biological bloom control. Limnology and Oceanography: Methods, 6(10), 513–522.Google Scholar
  17. Laita, L. C., Calvo, L., Bes, M. T., Fillat, M. F., & Sánchez, M. L. P. (2016). Effects of benzene and several pharmaceuticals on the growth and microcystin production in Microcystis aeruginosa PCC 7806. Limnetica, 34(1), 237–246.Google Scholar
  18. Lezcano, M. Á., Quesada, A., & El-Shehawy, R. (2018). Seasonal dynamics of microcystin-degrading bacteria and toxic cyanobacterial blooms: Interaction and influence of abiotic factors. Harmful Algae, 71, 19–28.Google Scholar
  19. Li, H., Ai, H. N., Kang, L., Sun, X. F., & He, Q. (2016a). Simultaneous Microcystis algicidal and microcystin degrading capability by a single Acinetobacter bacterial strain. Environmental Science & Technology, 50(21), 11903–11911.Google Scholar
  20. Li, J. M., Li, R. H., & Li, J. (2017). Current research scenario for microcystins biodegradation - a review on fundamental knowledge, application prospects and challenges. Science of the Total Environment, 595, 615–632.Google Scholar
  21. Li, Y., Lei, X. Q., Zhu, H., Zhang, H. J., Guan, C. W., Chen, Z. R., Zheng, W., Fu, L. J., & Zheng, T. L. (2016b). Chitinase producing bacteria with direct algicidal activity on marine diatoms. Scientific Reports, 6, 21984.Google Scholar
  22. Li, Y., Zhu, H., Lei, X. Q., Zhang, H. J., Cai, G. J., Chen, Z. R., Fu, L. J., Xu, H., & Zheng, T. L. (2015a). The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35. Frontiers in Microbiology, 6, 992.Google Scholar
  23. Li, Z. H., Geng, M. X., & Yang, H. (2015b). Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa. Applied Microbiology and Biotechnology, 99(2), 981–990.Google Scholar
  24. Lin, S. Q., Pan, J. L., Li, Z. H., Liu, X. L., Tan, J., & Yang, H. (2014). Characterization of an algicidal bacterium Brevundimonas J4 and chemical defense of Synechococcus sp. BN60 against bacterium J4. Harmful Algae, 37, 1–7.Google Scholar
  25. Liu, H. B., Song, X., Guan, Y. N., Pan, D., Li, Y. H., Xu, S. Y., & Fang, Y. Y. (2017). Role of illumination intensity in microcystin development using Microcystis aeruginosa as the model algae. Environmental Science and Pollution Research, 24(29), 23261–23272.Google Scholar
  26. Liu, Z. Z., Zhu, J. P., Li, M., Xue, Q. Q., Zeng, Y., & Wang, Z. P. (2014). Effects of freshwater bacterial siderophore on Microcystis and Anabaena. Biological Control, 78, 42–48.Google Scholar
  27. Lopes, W. S., Buriti, J. S., Cebalos, B. S. O., Sousa, J. T., Leite, V. D., & Vieira, F. F. (2017). Removal of microcystin-LR from drinking water using a system involving oxidation and adsorption. Water, Air, & Soil Pollution, 228(9), 1–14.Google Scholar
  28. Lu, X. H., Zhou, B., Xu, L. L., Liu, L., Wang, G. Y., Liu, X. D., & Tang, X. X. (2016). A marine algicidal Thalassospira and its active substance against the harmful algal bloom species Karenia mikimotoi. Applied Microbiology and Biotechnology, 100(11), 5131–5139.Google Scholar
  29. Ly, Q. V., Maqbool, T., & Hur, J. (2017). Unique characteristics of algal dissolved organic matter and their association with membrane fouling behavior: a review. Environmental Science and Pollution Research, 24(12), 11192–11205.Google Scholar
  30. Marschner, B., & Kalbitz, K. (2003). Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma, 113(3–4), 211–235.Google Scholar
  31. Mattson, M. P. (2008). Hormesis defined. Ageing Research Reviews, 7(1), 1–7.Google Scholar
  32. Meyer, N., Bigalke, A., Kaulfuß, A., & Pohnert, G. (2017). Strategies and ecological roles of algicidal bacteria. FEMS Microbiology Reviews, 41(6), 880–899.Google Scholar
  33. Mohamed, Z. A. (2017). Macrophytes-cyanobacteria allelopathic interactions and their implications for water resources management—A review. Limnologica, 63, 122–132.Google Scholar
  34. Mohamed, Z. A., Deyab, M. A., Abou-Dobara, M. I., El-Sayed, A. K., & El-Raghi, W. M. (2015). Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: implication for water treatment and human health. Environmental Science and Pollution Research, 22(15), 11716–11727.Google Scholar
  35. Mohamed, Z. A. (2013). Allelopathic activity of the norharmane-producing cyanobacterium Synechocystis aquatilis against cyanobacteria and microalgae. Oceanological and Hydrobiological Studies, 42(1), 1–7.Google Scholar
  36. Ou, H., Gao, N. Y., Deng, Y., Qiao, J. L., Zhang, K. J., Li, T., & Dong, L. (2011). Mechanistic studies of Microcystic aeruginosa inactivation and degradation by UV-C irradiation and chlorination with poly-synchronous analyses. Desalination, 272(1–3), 107–119.Google Scholar
  37. Pham, T. L., & Utsumi, M. (2018). An overview of the accumulation of microcystins in aquatic ecosystems. Journal of Environmental Management, 213, 520–529.Google Scholar
  38. Puddick, J., Prinsep, M. R., Wood, S. A., Kaufononga, S. A. F., Cary, S. C., & Hamilton, D. P. (2014). High levels of structural diversity observed in microcystins from Microcystis CAWBG11 and characterization of six new microcystin congeners. Marine Drugs, 12(11), 5372–5395.Google Scholar
  39. Qin, Q. L., Li, Y., Zhang, Y. J., Zhou, Z. M., Zhang, W. X., Chen, X. L., Zhang, X. Y., Zhou, B. C., Wang, L., & Zhang, Y. Z. (2011). Comparative genomics reveals a deep-sea sediment-adapted life style of Pseudoalteromonas sp. SM9913. ISME Journal, 5, 274–284.Google Scholar
  40. Shao, J., Jiang, Y., Wang, Z., Peng, L., Luo, S., Gu, J., & Li, R. (2014). Interactions between algicidal bacteria and the cyanobacterium Microcystis aeruginosa: lytic characteristics and physiological responses in the cyanobacteria. International journal of Environmental Science and Technology, 11(2), 469–476.Google Scholar
  41. Shao, J. H., He, Y. X., Chen, A., Peng, L., Luo, S., Wu, G. Y., Zou, H. L., & Li, R. H. (2015). Interactive effects of algicidal efficiency of Bacillus sp. B50 and bacterial community on susceptibility of Microcystis aeruginosa with different growth rates. International Biodeterioration & Biodegradation, 97, 1–6.Google Scholar
  42. Shao, J. H., Li, R. H., Lepo, J. E., & Gu, J. D. (2013). Potential for control of harmful cyanobacterial blooms using biologically derived substances: problems and prospects. Journal of Environmental Management, 125, 149–155.Google Scholar
  43. Shen, G. Z., Qu, D., Li, K. P., & Li, M. (2017). Composition of extracellular and intracellular polymeric substances produced by Scenedesmus and Microcystis. Environmental Engineering Science, 34(12), 887–894.Google Scholar
  44. Shimizu, T., Oda, T., Ito, H., & Imai, I. (2017). Isolation and characterization of algicidal bacteria and its effect on a musty odor-producing cyanobacterium Dolichospermum crassum in a reservoir. Water Science and Technology: Water Supply, 17(3), 792–798.Google Scholar
  45. Stedmon, C. A., & Bro, R. (2008). Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11), 572–579.Google Scholar
  46. Sun, P. F., Esquivel-Elizondo, S., Zhao, Y. H., & Wu, Y. H. (2017a). Glucose triggers the cytotoxicity of Citrobacter sp. R1 against Microcystis aeruginosa. Science of the Total Environment, 603–604, 18–25.Google Scholar
  47. Sun, P. F., Lin, H., Wang, G., Zhang, X. M., Zhang, Q. C., & Zhao, Y. H. (2015). Wheat bran enhances the cytotoxicity of immobilized Alcaligenes aquatilis F8 against Microcystis aeruginosa. PLoS One, 10(8), e0136429.Google Scholar
  48. Sun, R., Sun, P. F., Zhang, J. H., Esquivel-Elizondo, S., & Wu, Y. H. (2017b). Microorganisms-based methods for harmful algal blooms control: a review. Bioresource Technology, 248, 12–20.Google Scholar
  49. Valério, E., Vasconcelos, V., & Campos, A. (2016). New insights on the mode of action of microcystins in animal cells - a review. Mini Reviews in Medicinal Chemistry, 16, 1032–1041.Google Scholar
  50. Wang, J., Zhang, L. J., Fan, J. J., & Wen, Y. Z. (2017a). Impacts of Rac- and S-metolachlor on cyanobacterial cell integrity and release of microcystins at different nitrogen levels. Chemosphere, 181, 619–626.Google Scholar
  51. Wang, N. Y., Wang, K., & Wang, C. (2017b). Comparison of different algicides on growth of Microcystis aeruginosa and microcystin release, as well as its removal pathway in riverways. Frontiers of Environmental Science & Engineering, 11(6), 3.Google Scholar
  52. Wang, X., Zhao, Y., Jiang, X., Wang, Y., Li, H., Wang, L., & Liang, W. (2018). The growth and physiological activity of Microcystis aeruginosa after flocculation using modified tannin. International Biodeterioration & Biodegradation, 133, 180–186.Google Scholar
  53. World Health Organization (WHO). (2011). Guidelines for drinking-water quality 4th Ed. Geneva, Switzerland: WHO.Google Scholar
  54. Wu, L. M., Wu, H. J., Chen, L. N., Xie, S. S., Zang, H. Y., Borriss, R., & Gao, X. W. (2014). Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Applied and Environmental Microbiology, 80(24), 7512–7520.Google Scholar
  55. Xuan, H. L., Dai, X. Z., Li, J., Zhang, X. H., Yang, C. Y., & Lo, F. (2017). A Bacillus sp. strain with antagonistic activity against Fusarium graminearum kills Microcystis aeruginosa selectively. Science of the Total Environment, 583, 214–221.Google Scholar
  56. Yi, Y. L., Yu, X. B., Zang, C., & Wang, G. X. (2015). Growth inhibition and microcystin degradation effects of Acinetobacter guillouiae A2 on Microcystis aeruginosa. Research in Microbiology, 166(2), 93–101.Google Scholar
  57. Yu, X. Q., Cai, G. J., Wang, H., Hu, Z., Zheng, W., Lei, X. Q., Zhu, X. Y., Chen, Y., Chen, Q. L., Din, H. Y., Tian, Y., Fu, L. J., & Zheng, T. L. (2017). Fast-growing algicidal Streptomyces sp. U3 and its potential in harmful algal bloom controls. Journal of Hazardous Materials, 341, 138–149.Google Scholar
  58. Zhang, N., Xu, B. B., & Qi, F. (2016b). Effect of phosphate loading on the generation of extracellular organic matters of Microcystis Aeruginosa and its derived disinfection by-products. Water, Air, & Soil Pollution, 227(8), 1–12.Google Scholar
  59. Zhang, Q., Song, Q., Wang, C., Zhou, C. S., Lu, C., & Zhao, M. R. (2017). Effects of glufosinate on the growth of and microcystin production by Microcystis aeruginosa at environmentally relevant concentrations. Science of the Total Environment, 575, 513–518.Google Scholar
  60. Zhang, X., Song, T., Ma, H., & Li, L. (2016a). Physiological response of Microcystis aeruginosa to the extracellular substances from an Aeromonas sp. RSC Advances, 6, 103662–103667.Google Scholar
  61. Zhao, L., Chen, L. N., & Yin, P. H. (2014). Algicidal metabolites produced by Bacillus sp. strain B1 against Phaeocystis globosa. Journal of Industrial Microbiology & Biotechnology, 41(3), 593–599.Google Scholar
  62. Zuo, X., Cao, Y., Gong, A., Ding, S., Zhang, T., & Wang, Y. (2016). Removal of microcystins by highly efficient photo-catalyst Bi2WO6-activated carbon under simulated light. Water, Air, & Soil Pollution, 227(4), 1–14.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yuanyuan Wang
    • 1
  • Huixian Li
    • 1
  • Qianlong Fan
    • 1
  • Jingjing Wei
    • 1
  • Xiaoyu Wang
    • 1
  • Xiaoxue Jiang
    • 1
  • Wenwen Zhang
    • 1
  • Wenyan Liang
    • 1
    Email author
  1. 1.College of Environmental Science & EngineeringBeijing Forestry University of ChinaBeijingChina

Personalised recommendations