Advertisement

Cadmium Accumulation in Peruvian Cacao (Theobroma cacao L.) and Opportunities for Mitigation

  • Katharina Laila Marie ZugEmail author
  • Hugo Alfredo Huamaní Yupanqui
  • Frank Meyberg
  • Julia Susanne Cierjacks
  • Arne Cierjacks
Article

Abstract

Crops are the main source of toxic cadmium for humans due to uptake from naturally or anthropogenically polluted soils. Chronic Cd ingestion causes kidney, liver, and skeletal damage along with an increased risk of cancer. Cacao is known to accumulate Cd and may therefore be potentially harmful to human health. Consequently, cocoa production on intensely polluted soils should be avoided. Cocoa products from South America in particular often exceed the limits for Cd, but the factors that drive Cd uptake are as yet poorly studied. In this study, we measured Cd concentrations in defatted cocoa powder from unfermented seeds of 40 different trees on 20 farms in the Huánuco Region, Peru, and associated the Cd levels with the farms’ soil, field management, and nearby vegetation diversity. The mean Cd concentration found in cocoa of the study region was 2.46 mg kg−1 with a range of 0.2–12.56 mg kg−1. The maximum content measured was an order of magnitude higher than the allowed limit of 1.5 mg kg−1 and was the highest reported so far in the literature. Soil Cd content was the most relevant driver of Cd concentration in cacao. In addition, fertilizer use caused significantly higher Cd concentration in cocoa. Higher biodiversity of herbs was positively correlated with Cd contents in cocoa. The study shows that, apart from the known correlation of soil conditions with Cd accumulation in cacao seeds, changes in fertilization and plant composition may be promising measures to counteract Cd contamination in regions with high soil Cd content.

Keywords

Biodiversity Heavy metal pollution Agroforestry South America Food security Food chain 

Notes

Acknowledgements

This study was part of a degree thesis carried out at Universität Hamburg in cooperation with Universidad Nacional Agraria de la Selva (UNAS). Travel expenses were provided by “Hamburglobal.” We thank the team of Alianza Cacao Peru for their support with field analyses. Students from the UNAS helped in the field and the laboratory. At Institute of Plant Science and Microbiology, we thank Thomas Tumforde for assisting with the HPLC analyses of secondary compounds and Detlef Böhm for support in the laboratory. Barbara Rudolph and the working group of Jens Rohwer gave administrative support. Peter Müller and Kelaine Ravdin kindly checked our English.

Supplementary material

11270_2019_4109_MOESM1_ESM.docx (28 kb)
ESM 1 (DOCX 27 kb)

References

  1. Acebo-Guerrero, Y., Hernández-Rodríguez, A., Heydrich-Pérez, M., El Jaziri, M., & Hernández-Lauzardo, A. (2012). Management of black pod rot in cacao (Theobroma cacao L.): a review. Fruits, 67, 41–48.CrossRefGoogle Scholar
  2. Ahenkorah, Y., Halm, B. J., Appiah, M. R., Akrofi, G. S., & Yirenkyi, J. E. K. (1987). Twenty years results from a shade and fertilizer trial on Amazon cacao (Theobroma cacao) in Ghana. Experimental Agriculture, 23, 31–39.CrossRefGoogle Scholar
  3. Aikpokpodion, P. E., Lajide, L., & Aiyesanmi, A. F. (2012). Metal fraction in soils collected from selected cocoa plantations in Ogun State, Nigeria. World Applied Science Journal, 20, 628–636.Google Scholar
  4. Amal, A. M., Hossam, S. E.-B., & Mohamed, M. R. (2009). Cadmium stress induced change in some hydrolytic enzymes, free radical formation and ultrastructural disorders in radish plant. Electronic Journal of Environmental, Agricultural and Food Chemistry, 8, 969–983.Google Scholar
  5. Araujo, Q. R., Fernandes, C. A. F., Ribeiro, D. O., Efraim, P., Steinmeier, D., Lieberei, R., Bastide, P., & Araujo, T. G. (2014). Cocoa quality index—a proposal. Food Control, 46, 49–54.CrossRefGoogle Scholar
  6. Arévalo-Gardini, E., Arévalo-Hernández, C. O., Baligar, V. C., & He, Z. L. (2017). Heavy metals accumulation in leaves and beans of cacao (Theobrome cacao L.) in major cacao growing regions in Peru. Science of the Total Environment, 605, 792–800.CrossRefGoogle Scholar
  7. Argüello, D., Chavez, E., Lauryssen, F., Vanderschueren, R., Smolders, E., & Montalvo, D. (2019). Soil properties and agronomic factors affecting cadmium concentrations in cacao beans: a nationwide survey in Ecuador. Science of the Total Environment, 649, 120–127.CrossRefGoogle Scholar
  8. Bansah, K. J., & Addo, W. K. (2016). Phytoremediation potential of plants grown on reclaimed spoil lands. Ghana Mining Journal, 16, 68–75.CrossRefGoogle Scholar
  9. Bates, D. M. (2010). Lme4: mixed-effects modeling with R. Vienna: R Development Core Team.Google Scholar
  10. Bisseleua, D., Hervé, B., & Vidal, S. (2008). Plant biodiversity and vegetation structure in traditional cocoa forest gardens in southern Cameroon under different management. Biodiversity and Conservation, 17, 1821–1835.CrossRefGoogle Scholar
  11. Boza, E. J., Motamayor, J. C., Amores, F. M., Cedeño-Amador, S., Tondo, C. L., Livingstone, D. S., Schnell, R. J., & Gutiérrez, O. A. (2014). Genetic characterization of the cacao cultivar CCN 51: its impact and significance on global cacao improvement and production. Journal of the American Society for Horticultural Science, 139, 219–229.CrossRefGoogle Scholar
  12. Braun-Blanquet, J. (1964). Pflanzensoziologie: Grundzüge der Vegetationskunde (2nd ed.). Wien: Springer.CrossRefGoogle Scholar
  13. CEM (2001). Operational Manual: Mars 5 Microwave Accelerated Reaction System. North Carolina: CEM Corporation.Google Scholar
  14. CEM (2004). Plant Tissue 2: Microwave Sample Preparation Note: XprAG-2 Rev. Date: 6/04. Category: Agricultural.Google Scholar
  15. Chaney, R. L., Malik, M., Li, Y. M., Brown, S. L., Brewer, E. P., Angle, J. S., & Baker, A. J. M. (1997). Phytoremediation of soil metals. Environmental Biotechnology, 8, 279–284.Google Scholar
  16. Chavez, E., He, Z. I., Stoffella, P. J., Mylavarapu, R. S., Li, Y. C., Moyano, B., & Baligar, V. C. (2015). Concentratiom of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. Science of the Total Environment, 533, 205–214.CrossRefGoogle Scholar
  17. Chen, T., Chang, Q., Clevers, J. G. P. W., & Kooistra, L. (2015). Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Environmental Pollution, 206, 217–226.CrossRefGoogle Scholar
  18. Cicuzza, D., & Kessler, M. (2011). Conservation value of cacao agroforestry systems for terrestrial herbaceous species in central Sulawesi, Indonesia. Biotropica, 43, 755–762.CrossRefGoogle Scholar
  19. Cierjacks, A., Pommeranz, M., Schulz, K., & Almeida-Cortez, J. (2016). Is crop yield related to weed species diversity and biomass in coconut and banana fields in northeastern Brazil? Agriculture, Ecosystem, and Environment, 220, 175–183.CrossRefGoogle Scholar
  20. Clough, Y., Faust, H., & Tscharntke, T. (2009a). Cacao boom and bust: sustainability of agroforests and opportunities for biodiversity conservation. Mini-review. Conservation Letters, 2, 197–205.CrossRefGoogle Scholar
  21. Clough, Y., Putra, D. D., Pitopang, R., & Tscharntke, T. (2009b). Local and landscape factors determine functional bird diversity in Indonesian cacao agroforestry. Biological Conservation, 142, 1032–1041.CrossRefGoogle Scholar
  22. Clough, Y., Barkmann, J., Juhrbandt, J., Kessler, M., Wanger, T. C., Anshary, A., Buchori, D., Cicuzza, D., Darras, K., Putra, D. D., Erasmi, S., Pitopang, R., Schmidt, C., Schulze, C. H., Seidel, D., Steffan-Dewenter, I., Stenchly, K., Vidal, S., Weist, M., Wielgoss, A. C., & Tsharntke, T. (2011). Combining high biodiversity with high yield in tropical agroforests. PNAS, 108, 8311–8316.CrossRefGoogle Scholar
  23. European Commission (2014). Commission Regulation (EU) No 488/2014 of 12 May 2014 amending Regulation (EC) No 1881/2006 as regards maximum levels of cadmium in foodstuffs. Official Journal of the European Union, L138, 75–79.Google Scholar
  24. Dudjak, J., Lachman, J., Miholová, D., Kolihová, D., & Pivec, V. (2004). Effect of cadmium on polyphenol content in young barley plants (Hordeum vulgare L.). Plant Soil and Environment, 50, 471–477.CrossRefGoogle Scholar
  25. Elwers, S., Zambrano, A., Rhosius, C., & Lieberei, R. (2009). Differences between the content of phenolic compounds in Criollo, Forastero and Trinitario cocoa seeds (Theobroma cacao L.). European Food Research Technologies, 229, 937–948.CrossRefGoogle Scholar
  26. European Food Safety Authority (EFSA). (2012). Cadmium dietary exposure in the European population. EFSA Journal, 10, 1–37.Google Scholar
  27. Fauziah, C. I., Rozita, O., Zauyah, S., Anuar, A. R., & Shamshuddin, J. (2001). Heavy metals content in soils of Peninsular Malaysia grown with cocoa and cocoa tissues. Malaysian Journal of Soil Science, 5, 47–58.Google Scholar
  28. Food and Agriculture Organization of the United Nations (FAO), World Health Organization (WHO). (2016). Proposed draft maximum levels for cadmium in chocolate and cocoa-derived products. Rotterdam: Codex Committee on Contaminants in Food, Tenth Session.Google Scholar
  29. Frey, W., & Lösch, R. (2010). Geobotanik: Pflanze und Vegetation in Raum und Zeit (3rd ed.). Heidelberg: Spektrum Akademischer Verlag.CrossRefGoogle Scholar
  30. García Carrión, L. F. (2012). Catálogo de Cultivares de Cacao del Perú (3rd ed.). Lima: Ministerio de Agricultura, Dirección General de Competividad Agraria.Google Scholar
  31. Gramlich, A., Tandy, S., Andres, C., Chincheros Paniagua, J., Armengot, L., Schneider, M., & Schulin, R. (2016). Cadmium uptake by cocoa trees in agroforestry and monoculture systems under conventional and organic management. Science of the Total Environment, 580, 677–686.CrossRefGoogle Scholar
  32. Gramlich, A., Tandy, S., Gauggel, C., López, M., Perla, D., Gonzales, V., & Schulin, R. (2017). Soil cadmium uptake by cacao in Honduras. Science of the Total Environment, 612, 370–378.CrossRefGoogle Scholar
  33. Grant, C. A., Buckley, W. T., Bailey, L. D., & Selles, F. (1996). Cadmium accumulation in crops. Canadian Journal of Plant Science, 78, 1–17.CrossRefGoogle Scholar
  34. Greger, M., Kabir, A. H., Landberg, T., Maity, P., & Lindberg, S. (2016). Silicate reduces cadmium uptake into cells of wheat. Environmental Pollution, 211, 90–97.CrossRefGoogle Scholar
  35. Groeneveld, J., Tscharntke, T., Moser, G., & Clough, Y. (2010). Experimental evidence for stronger cacao yield limitation by pollination than by plant resources. Perspectives in Plant Ecology, Evolution and Systematics, 12, 183–191.CrossRefGoogle Scholar
  36. Hahne, H. C. H., & Kroontje, W. (1973). Significance of pH and chloride concentration on behaviour of heavy metal pollutants: mercury(II), cadmium(II), zinc(II) and lead(II). Journal of Environmental Quality, 2, 444–450.CrossRefGoogle Scholar
  37. Hanafi, M. M., & Maria, G. J. (1998). Cadmium and zinc in acid tropical soils: III. Response of cocoa seedlings in a greenhouse experiment. Communications in Soil Science and Plant Analysis, 29, 1949–1960.CrossRefGoogle Scholar
  38. He, Q. B., & Singh, B. R. (1994a). Crop uptake of cadmium from phosphorus fertilizers: I. Yield and cadmium content. Water, Air, and Soil Pollution, 74, 251–265.Google Scholar
  39. He, Q. B., & Singh, B. R. (1994b). Crop uptake of cadmium from phosphorus fertilizers: II. Relationship with extractable soil cadmium. Water, Air, and Soil Pollution, 74, 267–280.Google Scholar
  40. Hoenig, M., & de Kersabiec, A.-M. (1996). Sample preparation steps for analysis by atomic spectroscopy methods: present status. Spectrochimica Acta Part B, 51, 1297–1307.CrossRefGoogle Scholar
  41. Holm, P. E., Christensen, T. H., Tjell, J. C., & McGrath, S. P. (1995). Heavy metals in the environment: speciation of cadmium and zinc with application to soil solutions. Journal of Environmental Quality, 24, 183–190.CrossRefGoogle Scholar
  42. Hoseini, S. M., & Zargari, F. (2013). Cadmium in plants: a review. International Journal of Farming and Allied Science, 2, 2002–2004.Google Scholar
  43. International Cacao Germplasm Database (ICGD) (2019). CCN 51. http://www.icgd.rdg.ac.uk/search_name.php, http://www.icgd.rdg.ac.uk/clone.php. Accessed 14 Feb 2019
  44. Ji, P., Sun, T., Song, Y., Ackland, M. L., & Liu, Y. (2011). Strategies for enhancing the phytoremediation of cadmium-contaminated agricultural soils by Solanum nigrum L. Environmental Pollution, 159, 762–768.CrossRefGoogle Scholar
  45. Jung, M. C., & Thornton, I. (1996). Heavy metal contamination of soils and plants in the vicinity of a lead-zinc mine, Korea. Applied Geochemistry, 11, 53–59.CrossRefGoogle Scholar
  46. Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). Boca Raton: CRC.CrossRefGoogle Scholar
  47. Kieck, J. S., Zug, K. L. M., Huamaní Yupanqui, H. A., Gómez Aliaga, R., & Cierjacks, A. (2016). Plant diversity effects on crop yield, pathogen incidence, and secondary metabolism on cacao farms in Peruvian Amazonia. Agriculture, Ecosystem and Environment, 222, 223–234.CrossRefGoogle Scholar
  48. Kindt, R., & Coe, R. (2005). Tree diversity analysis. A manual and software for common statistical methods for ecological and biodiversity studies. Nairobi: ICRAF.Google Scholar
  49. Kirbag Zengin, F., & Munzuroglu, O. (2006). Toxic effects of cadmium (Cd++) on metabolism of sunflower (Helianthus annuus L.) seedlings. Acta Agriculturae Scandinavica Section B-Soil and Plant Science, 56, 224–229.CrossRefGoogle Scholar
  50. Kováčik, J., Klejdus, B., Hedbavny, J., Štork, F., & Bačkor, M. (2009). Comparison of cadmium and copper effect on phenolic metabolism, mineral nutrients and stress-related parameters in Matricaria chamimilla plants. Plant and Soil, 320, 231–242.CrossRefGoogle Scholar
  51. Lavid, N., Schwartz, A., Lewinsohn, E., & Tel-Or, E. (2001). Phenols and phenol oxidases are involved in cadmium accumulation in the water plants Nymphoides peltata (Menyanthaceae) and Nymphaeae (Nymphaeaeceae). Planta, 214, 189–195.CrossRefGoogle Scholar
  52. Li, L.-Z., Tu, C., Peijnenburg, W. J. G. M., & Luo, Y.-M. (2017). Characteristics of cadmium uptake and membrane transport in roots of intact wheat (Triticum aestivum L.) seedlings. Environmental Pollution, 221, 351–358.CrossRefGoogle Scholar
  53. Lieberei, R., & Reisdorff, C. (2012). Nutzpflanzen, 8. Auflage. Stuttgart: Thieme.Google Scholar
  54. Liu, Y., Zhang, C., Zhao, Y., Sun, S., & Liu, Z. (2016). Effects of growing seasons and genotypes on the accumulation of cadmium and mineral nutrients in rice grown in cadmium contaminated soils. Science of the Total Environment, 579, 1282–1288.CrossRefGoogle Scholar
  55. Magurran, A. E. (1988). Why diversity? Ecological diversity and its measurement. Berlin: Springer.CrossRefGoogle Scholar
  56. McLaughlin, M., & Singh, B. (1995). Cadmium in soils and plants. Norway: Agricultural University of Norway.Google Scholar
  57. Mengel, K., & Kirkby, E. A. (1978). Principles of plant nutrition. Berne: International Potash Institute.Google Scholar
  58. Moser, G., Leuschner, C., Hertel, D., Hölscher, D., Köhler, M., Leitner, D., Michalzik, B., Prihastanti, E., Tjitrosemito, S., & Schwendenmann, L. (2010). Response of cocoa tree (Theobroma cacao) to a 13-month desication period in Sulawesi, Indonesia. Agroforestry Systems, 79, 171–187.CrossRefGoogle Scholar
  59. Mounicou, S., Szpunar, J., Lobinski, R., Andrey, D., & Blake, C.-J. (2002a). Bioavailibility of cadmium and lead in cocoa: comparison of extraction procedures prior to size-exclusion fast-flow liquid chromatography with inductively coupled plasma mass spectrometric detection (SEC-ICP-MS). The Royal Society of Chemistry, 17, 880–886.Google Scholar
  60. Mounicou, S., Szunar, J., Andrey, D., Blake, C., & Lobinski, R. (2002b). Development of a sequential enzymolysis approach for the evaluation of the bioaccessibility of Cd and Pb from cocoa. The Royal Society of Chemistry, 127, 1638–1641.Google Scholar
  61. Mounicou, S., Szpunar, J., Andrey, D., Blake, C., & Lobinski, R. (2003). Concentrations and bioavailability of cadmium and lead in cocoa powder and related products. Food Additives and Contaminants, 20, 343–352.CrossRefGoogle Scholar
  62. Mullins, G. L., Sommers, L. E., & Barber, S. A. (1986). Modeling the plant uptake of cadmium and zinc from soils treated with sewage sludge. Soil Science Society of America Journal, 50, 1245–1250.CrossRefGoogle Scholar
  63. Niemenak, N., Rohsius, C., Elwers, S., Ndoumou, D. O., & Lieberei, R. (2006). Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phenolic and anthocyanins contents. Journal of Food Composition and Analysis, 19, 612–619.CrossRefGoogle Scholar
  64. Ogunlade, M. O., & Agbeniyi, S. O. (2011). Impact of pesticides use on heavy metals pollution in cocoa soils of Cross-River State, Nigeria. African Journal of Agricultural Research, 6, 3725–3728.Google Scholar
  65. Peet, R. K. (1974). The measurement of species diversity. Annual Review of Ecology and Systematics, 5, 285–307.CrossRefGoogle Scholar
  66. Pinheiro, J. C., & Bates, D. M. (1995). Mixed-effects models in S and S-Plus. New York: Springer.Google Scholar
  67. Prasad, M. N. V. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35, 525–545.CrossRefGoogle Scholar
  68. Prugarová, A., & Kovác, M. (1987). Lead and cadmium content in cocoa beans. Food, 31, 635–644.Google Scholar
  69. Purser, W. F. C., & Purser, M. (2008). Metal-mining in Peru, past and present. Austin: Praeger Publishers, University of Texas.Google Scholar
  70. R Development Core Team. (2014). R: a language and environment for statistical computing, version 3.1.2. Vienna: Foundation for Statistical Computing https://www.r-project.org/, 20 April 2017.Google Scholar
  71. Ramtahal, G., Yen, I. C., Seegobin, D., Bekele, I., Bekele, F., Wilson, L., & Harrynanan, L. (2012). Investigation of the effect of mycorrhizal fungi on cadmium accumulation in cacao. Proceedings of the Caribbean Food Crops Society, 48, 147–152.Google Scholar
  72. Ripley, B. (2015). Package MASS. R package version 7 (pp. 3–44). Vienna: R Development Core Team.Google Scholar
  73. Sager, M. (2012). Chocolate and cocoa products as a source of essential elements in nutrition. Nutrition and Food Science, 2, 1–10.CrossRefGoogle Scholar
  74. Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., & Raskin, I. (1995). Phytoremediation: novel strategy for the removal of toxic metals from environment using plants. Biotechnology, 13, 468–474.Google Scholar
  75. Samedani, B., Juraimi, A. S., Abdullah, S. A. S., Rafii, M. Y., Rahim, A. A., & Anwar, M. P. (2014). Effects of cover crops on weed community and oil palm yield. International Journal of Agricultural Biology, 16, 23–31.Google Scholar
  76. Schroeder, H. A., Nason, M. D. A. P., Tipton, I. H., & Balassa, J. J. (1966). Essential trace metals in man: zinc relation to environmental cadmium. Journal of Chronic Diseases, 20, 179–210.CrossRefGoogle Scholar
  77. Schroth, G., Läderach, P., Martinez-Valle, A. I., Bunn, C., & Jassogne, L. (2016). Vulnerability to climate change of cocoa in West Africa: patterns, opportunities and limits to adaption. Science of the Total Environment, 556, 231–241.CrossRefGoogle Scholar
  78. Schwendenmann, L., Veldkamp, E., Gerald, M., Hölscher, D., Köhler, M., Clough, Y., Anas, I., Djajakirana, G., Erasmi, S., Hertel, D., Leitner, D., Leuschner, C., Michalzik, B., Propastin, P., Tjoa, A., Tscharntke, T., & van Straaten, O. (2010). Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Global Change Biology, 16, 1515–1530.CrossRefGoogle Scholar
  79. Smith, R. G., Mortensen, D. A., & Ryan, M. R. (2010). A new hypothesis for the functional role of diversity in mediating resource pools and weed–crop competition in agroecosystems. Weed Research, 50, 37–48.CrossRefGoogle Scholar
  80. Soberanis, W., Rios, R., Arévalo, E., Zuniga, L., Cabezas, O., & Krauss, U. (1991). Increased frequency of phytosanitary pod removal in cacao (Theobroma cacao) increases yield economically in eastern Peru. Crop Protection, 18, 677–685.CrossRefGoogle Scholar
  81. Stenchly, K., Clough, Y., Buchori, D., & Tscharntke, T. (2011). Spider web guilds in cacao agroforestry—comparing tree, plot and landscape-scale management. Diversity and Distributions, 17, 748–756.CrossRefGoogle Scholar
  82. Stenchly, K., Clough, Y., & Tscharntke, T. (2012). Spider species richness in cacao agroforestry systems, comparing vertical strata, local management and distance to forest. Agriculture, Ecosystems and Environment, 149, 189–194.CrossRefGoogle Scholar
  83. Stoll, L. (2010). Biochemische Indikatoren für Keimung und Fermentation in Samen von Kakao (Theobroma cacao L.). Doctoral dissertation, Hamburg: Universität HamburgGoogle Scholar
  84. Strug, D. T. (1985). The foreign politics of cocaine. Comment on a plan to eradicate the coca leaf in Peru. In Paicini & Franquemont (Eds.), Coca and cocaine. Effect on people and policy in Latin America. Proceedings of the conference: the coca leaf and its derivates—biology, society and policy (pp. 73–88). New York: Cornell University.Google Scholar
  85. Tang, H., Li, T., Yu, H., & Zhang, X. (2016). Cadmium accumulation characteristics and removal potentials of high cadmium accumulating rice line grown in cadmium-contaminated soils. Environmental Science and Pollution Research, 23, 15351–15357.CrossRefGoogle Scholar
  86. Thyssen, G. M., Keil, C., Wolff, M., Sperling, M., Kadow, D., Haase, H., & Karst, U. (2018). Bioimaging of the elemental distribution in cocoa beans by means of LA-ICP-TQMS. Journal of Analytical Atomic Spectrometry, 33, 187–194.CrossRefGoogle Scholar
  87. Tscharntke, T., Clough, Y., Bhagwat, S. A., Buchori, D., Faust, H., Hertl, D., Hölscher, D., Juhrbandt, J., Kessler, M., Perfecto, I., Scherber, C., Schroth, G., Veldkamp, E., & Wanger, T. C. (2011). Multifunctional shade-tree management in tropical agroforestry landscapes—a review. Journal of Applied Ecology, 48, 619–629.CrossRefGoogle Scholar
  88. Tugwell, S., & Branch, G. M. (1989). Differential polyphenolic distribution among tissues in the kelps Ecklonia maxima, Laminaria pallida and Macrocystis angustifolia in relation to plant-defence theory. Journal of Experimental Marine Biology and Ecology, 129, 219–230.CrossRefGoogle Scholar
  89. Vaughn, K. C., & Duke, S. O. (1984). Function of polyphenol oxidase in higher plants. Physiologia Plantarum, 60, 106–112.CrossRefGoogle Scholar
  90. Villa, J. E. L., Peixoto, R. R. A., & Cadore, S. (2014). Cadmium and lead in chocolates commercialized in Brazil. Journal of Agricultural and Food Chemistry, 62, 8759–8763.CrossRefGoogle Scholar
  91. Wagner, G. J. (1993). Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 51, 172–212.Google Scholar
  92. Walter, H., & Breckle, S. (2004). Ökologie der Erde, 3. Auflage, Band 2 Spezielle Ökologie der Tropischen und Subtropischen Zonen. München: Elsevier GmbH.Google Scholar
  93. Welz, B., & Sperling, M. (2008). Atomic absorption spectrometry. Third, completely revised edition. Weinheim: Wiley-VCH.Google Scholar
  94. Williams, C. H., & David, D. J. (1976). The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Science, 121, 86–93.CrossRefGoogle Scholar
  95. World Health Organization (WHO). (2010). Preventing disease through healthy environment. Exposure to cadmium: a major public health concern. Geneva: World Health Organization.Google Scholar
  96. Zhang, D., Gardini, E. A., Motilal, L. A., Baligar, V., Bailey, B., Zuñiga-Cernades, L., Arevalo-Arevalo, C. E., & Meinhardt, L. (2011). Dissecting genetic structure in farmer selections of Theobroma cacao in the Peruvian Amazon: implications for on farm conservation and rehabilitation. Tropical Plant Biology, 4, 106–116.CrossRefGoogle Scholar
  97. Zhu, H., Chen, C., Zhu, Q., & Huang, D. (2016). Effects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical China. Environmental Pollution, 219, 99–106.CrossRefGoogle Scholar
  98. Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., & Smith, G. M. (2009). Mixed effects models and extensions in ecology with R. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katharina Laila Marie Zug
    • 1
    Email author
  • Hugo Alfredo Huamaní Yupanqui
    • 2
  • Frank Meyberg
    • 3
  • Julia Susanne Cierjacks
    • 1
  • Arne Cierjacks
    • 1
    • 4
  1. 1.Institute of Plant Science and Microbiology, Biodiversity of Useful PlantsUniversity of HamburgHamburgGermany
  2. 2.Facultad de AgronomíaUniversidad Nacional Agraria de la SelvaTingo MaríaPeru
  3. 3.Department of Chemistry, Element AnalyticsUniversity of HamburgHamburgGermany
  4. 4.Faculty Agriculture/Environment/ChemistryUniversity of Applied Sciences DresdenDresdenGermany

Personalised recommendations