Advertisement

Water, Air, & Soil Pollution

, 230:50 | Cite as

Novel Crayfish Shell Biochar Nanocomposites Loaded with Ag-TiO2 Nanoparticles Exhibit Robust Antibacterial Activity

  • Yifan Zeng
  • Yingwen XueEmail author
  • Li Long
  • Jinpeng Yan
Article

Abstract

A fast sol-dipping-gel method was applied to load Ag and TiO2 nanoparticles on the surface of crayfish shell biochar to make an inexpensive and novel nanocomposite. Tetra-n-butyl titanate (Ti(OC4H9)4) and silver nitrate (AgNO3) were used as the nanoparticle precursors. Crayfish shell was pyrolyzed to produce the biochar host. Paper-disk diffusion method was applied to measure antibacterial activities of the nanocomposites to E. coli. The maximum loading rate of TiO2 and Ag nanoparticles on the biochar reached 7.54% and 3.20%, respectively. Results of long-term antibacterial effect experiment showed that the Ag-TiO2-biochar had robust antibacterial activity and could be reused for multiple times. The inactivation of E. coli of initial concentration of 105 CFU/mL by Ag-TiO2-biochar under solar light reached around 99% of sterilization ratio in 5 min. In addition, the antibacterial ability of the nanocomposite was better in light than that in dark due to the presence of TiO2. Findings of this study suggest that the novel nanocomposite is a promising material for water treatment units and household water purifiers.

Keywords

Biochar Nanocomposites Ag-TiO2 nanoparticles Antibacterial activity 

Notes

Acknowledgements

This work was partially supported by Wuhan Water Engineering and Technology Co. Ltd.

Funding Information

This work was partially supported by the National “Twelfth Five-Year” Plan for Science and Technology Pillar Program [grant number 2015BAL01B02].

References

  1. Akhavan, O. (2009). Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid and Interface Science, 336(1), 117–124.CrossRefGoogle Scholar
  2. Albert, E., et al. (2015). Antibacterial properties of Ag–TiO2 composite sol–gel coatings. RSC Advances, 5(73), 59070–59081.CrossRefGoogle Scholar
  3. Amin, S. A., Pazouki, M., & Hosseinnia, A. (2009). Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli. Powder Technology, 196(3), 241–245.CrossRefGoogle Scholar
  4. Armelao, L., et al. (2007). Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology, 18(37), 1–7.Google Scholar
  5. Chen, M., Zhang, E., & Zhang, L. (2016). Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Materials Science & Engineering. C, Materials for Biological Applications, 62, 350–360.CrossRefGoogle Scholar
  6. Cheng, Q., Li, C., Pavlinek, V., Saha, P., & Wang, H. (2006). Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Applied Surface Science, 252(12), 4154–4160.CrossRefGoogle Scholar
  7. Choi, H., Stathatos, E., & Dionysiou, D. D. (2006). Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B: Environmental, 63(1–2), 60–67.CrossRefGoogle Scholar
  8. Damodar, R. A., You, S. J., & Chou, H. H. (2009). Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials, 172(2–3), 1321–1328.CrossRefGoogle Scholar
  9. Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29.CrossRefGoogle Scholar
  10. Goei, R., & Lim, T. T. (2014). Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities. Water Research, 59, 207–218.CrossRefGoogle Scholar
  11. Huo, K., Gao, B., Fu, J., Zhao, L., & Chu, P. K. (2014). Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Advances, 4(33), 17300–17324.CrossRefGoogle Scholar
  12. Lee, M. S., Hong, S.-S., & Mohseni, M. (2005). Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent. Journal of Molecular Catalysis A: Chemical, 242(1–2), 135–140.CrossRefGoogle Scholar
  13. Li, M., et al. (2011). Synergistic bactericidal activity of Ag-TiO(2) nanoparticles in both light and dark conditions. Environmental Science & Technology, 45(20), 8989–8995.CrossRefGoogle Scholar
  14. Li, H., Cui, Q., Feng, B., Wang, J., Lu, X., & Weng, J. (2013). Antibacterial activity of TiO2 nanotubes: influence of crystal phase, morphology and Ag deposition. Applied Surface Science, 284, 179–183.CrossRefGoogle Scholar
  15. Liu, Y., Wang, X., Yang, F., & Yang, X. (2008). Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous and Mesoporous Materials, 114(1–3), 431–439.CrossRefGoogle Scholar
  16. Liu, F., et al. (2012). Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties. Applied Surface Science, 258(10), 4667–4671.CrossRefGoogle Scholar
  17. Liu, L., Bai, H., Liu, J., & Sun, D. D. (2013). Multifunctional graphene oxide-TiO(2)-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. Journal of Hazardous Materials, 261, 214–223.CrossRefGoogle Scholar
  18. Long, L., Xue, Y., Zeng, Y., Yang, K., & Lin, C. (2017). Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid. Journal of Cleaner Production, 166, 1244–1252.CrossRefGoogle Scholar
  19. Ma, N., Fan, X., Quan, X., & Zhang, Y. (2009). Ag–TiO2/HAP/Al2O3 bioceramic composite membrane: fabrication, characterization and bactericidal activity. Journal of Membrane Science, 336(1–2), 109–117.CrossRefGoogle Scholar
  20. Macwan, D. P., Dave, P. N., & Chaturvedi, S. (2011). A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science, 46(11), 3669–3686.CrossRefGoogle Scholar
  21. Mai, L., Wang, D., Zhang, S., Xie, Y., Huang, C., & Zhang, Z. (2010). Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Applied Surface Science, 257(3), 974–978.CrossRefGoogle Scholar
  22. Morikawa, T., Irokawa, Y., & Ohwaki, T. (2006). Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation. Applied Catalysis A: General, 314(1), 123–127.CrossRefGoogle Scholar
  23. Necula, B. S., Apachitei, I., Tichelaar, F. D., Fratila-Apachitei, L. E., & Duszczyk, J. (2011). An electron microscopical study on the growth of TiO2-Ag antibacterial coatings on Ti6Al7Nb biomedical alloy. Acta Biomaterialia, 7(6), 2751–2757.CrossRefGoogle Scholar
  24. Necula, B. S., van Leeuwen, J. P., Fratila-Apachitei, L. E., Zaat, S. A., Apachitei, I., & Duszczyk, J. (2012). In vitro cytotoxicity evaluation of porous TiO(2)-Ag antibacterial coatings for human fetal osteoblasts. Acta Biomaterialia, 8(11), 4191–4197.CrossRefGoogle Scholar
  25. Perkas, N., Lipovsky, A., Amirian, G., Nitzan, Y., & Gedanken, A. (2013). Biocidal properties of TiO2 powder modified with Ag nanoparticles. Journal of Materials Chemistry B, 1(39), 5309–5316.Google Scholar
  26. Selvam, S., Rajiv Gandhi, R., Suresh, J., Gowri, S., Ravikumar, S., & Sundrarajan, M. (2012). Antibacterial effect of novel synthesized sulfated beta-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. International Journal of Pharmaceutics, 434(1–2), 366–374.CrossRefGoogle Scholar
  27. Tan, S. X., Tan, S. Z., Chen, J. X., Liu, Y. L., & Yuan, D. S. (2009). Preparation and properties of antibacterial TiO2@C/Ag core-shell composite. Science and Technology of Advanced Materials, 10(4), 045002.CrossRefGoogle Scholar
  28. Tong, T., et al. (2013). Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environmental Science & Technology, 47(21), 12486–12495.CrossRefGoogle Scholar
  29. Wei, L., Wang, H., Wang, Z., Yu, M., & Chen, S. (2015). Preparation and long-term antibacterial activity of TiO2 nanotubes loaded with Ag nanoparticles and Ag ions. RSC Advances, 5(91), 74347–74352.CrossRefGoogle Scholar
  30. Yao, Y., Ohko, Y., Sekiguchi, Y., Fujishima, A., & Kubota, Y. (2008). Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 85(2), 453–460.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Civil EngineeringWuhan UniversityWuhanChina
  2. 2.Engineering Research Center of Urban Disasters Prevention and Fire Rescue Technology of Hubei ProvinceWuhanChina

Personalised recommendations