Novel Crayfish Shell Biochar Nanocomposites Loaded with Ag-TiO2 Nanoparticles Exhibit Robust Antibacterial Activity
Abstract
A fast sol-dipping-gel method was applied to load Ag and TiO2 nanoparticles on the surface of crayfish shell biochar to make an inexpensive and novel nanocomposite. Tetra-n-butyl titanate (Ti(OC4H9)4) and silver nitrate (AgNO3) were used as the nanoparticle precursors. Crayfish shell was pyrolyzed to produce the biochar host. Paper-disk diffusion method was applied to measure antibacterial activities of the nanocomposites to E. coli. The maximum loading rate of TiO2 and Ag nanoparticles on the biochar reached 7.54% and 3.20%, respectively. Results of long-term antibacterial effect experiment showed that the Ag-TiO2-biochar had robust antibacterial activity and could be reused for multiple times. The inactivation of E. coli of initial concentration of 105 CFU/mL by Ag-TiO2-biochar under solar light reached around 99% of sterilization ratio in 5 min. In addition, the antibacterial ability of the nanocomposite was better in light than that in dark due to the presence of TiO2. Findings of this study suggest that the novel nanocomposite is a promising material for water treatment units and household water purifiers.
Keywords
Biochar Nanocomposites Ag-TiO2 nanoparticles Antibacterial activityNotes
Acknowledgements
This work was partially supported by Wuhan Water Engineering and Technology Co. Ltd.
Funding Information
This work was partially supported by the National “Twelfth Five-Year” Plan for Science and Technology Pillar Program [grant number 2015BAL01B02].
References
- Akhavan, O. (2009). Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. Journal of Colloid and Interface Science, 336(1), 117–124.CrossRefGoogle Scholar
- Albert, E., et al. (2015). Antibacterial properties of Ag–TiO2 composite sol–gel coatings. RSC Advances, 5(73), 59070–59081.CrossRefGoogle Scholar
- Amin, S. A., Pazouki, M., & Hosseinnia, A. (2009). Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli. Powder Technology, 196(3), 241–245.CrossRefGoogle Scholar
- Armelao, L., et al. (2007). Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology, 18(37), 1–7.Google Scholar
- Chen, M., Zhang, E., & Zhang, L. (2016). Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Materials Science & Engineering. C, Materials for Biological Applications, 62, 350–360.CrossRefGoogle Scholar
- Cheng, Q., Li, C., Pavlinek, V., Saha, P., & Wang, H. (2006). Surface-modified antibacterial TiO2/Ag+ nanoparticles: preparation and properties. Applied Surface Science, 252(12), 4154–4160.CrossRefGoogle Scholar
- Choi, H., Stathatos, E., & Dionysiou, D. D. (2006). Sol–gel preparation of mesoporous photocatalytic TiO2 films and TiO2/Al2O3 composite membranes for environmental applications. Applied Catalysis B: Environmental, 63(1–2), 60–67.CrossRefGoogle Scholar
- Damodar, R. A., You, S. J., & Chou, H. H. (2009). Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. Journal of Hazardous Materials, 172(2–3), 1321–1328.CrossRefGoogle Scholar
- Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015). Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 25, 1–29.CrossRefGoogle Scholar
- Goei, R., & Lim, T. T. (2014). Ag-decorated TiO2 photocatalytic membrane with hierarchical architecture: photocatalytic and anti-bacterial activities. Water Research, 59, 207–218.CrossRefGoogle Scholar
- Huo, K., Gao, B., Fu, J., Zhao, L., & Chu, P. K. (2014). Fabrication, modification, and biomedical applications of anodized TiO2 nanotube arrays. RSC Advances, 4(33), 17300–17324.CrossRefGoogle Scholar
- Lee, M. S., Hong, S.-S., & Mohseni, M. (2005). Synthesis of photocatalytic nanosized TiO2–Ag particles with sol–gel method using reduction agent. Journal of Molecular Catalysis A: Chemical, 242(1–2), 135–140.CrossRefGoogle Scholar
- Li, M., et al. (2011). Synergistic bactericidal activity of Ag-TiO(2) nanoparticles in both light and dark conditions. Environmental Science & Technology, 45(20), 8989–8995.CrossRefGoogle Scholar
- Li, H., Cui, Q., Feng, B., Wang, J., Lu, X., & Weng, J. (2013). Antibacterial activity of TiO2 nanotubes: influence of crystal phase, morphology and Ag deposition. Applied Surface Science, 284, 179–183.CrossRefGoogle Scholar
- Liu, Y., Wang, X., Yang, F., & Yang, X. (2008). Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous and Mesoporous Materials, 114(1–3), 431–439.CrossRefGoogle Scholar
- Liu, F., et al. (2012). Nano-TiO2@Ag/PVC film with enhanced antibacterial activities and photocatalytic properties. Applied Surface Science, 258(10), 4667–4671.CrossRefGoogle Scholar
- Liu, L., Bai, H., Liu, J., & Sun, D. D. (2013). Multifunctional graphene oxide-TiO(2)-Ag nanocomposites for high performance water disinfection and decontamination under solar irradiation. Journal of Hazardous Materials, 261, 214–223.CrossRefGoogle Scholar
- Long, L., Xue, Y., Zeng, Y., Yang, K., & Lin, C. (2017). Synthesis, characterization and mechanism analysis of modified crayfish shell biochar possessed ZnO nanoparticles to remove trichloroacetic acid. Journal of Cleaner Production, 166, 1244–1252.CrossRefGoogle Scholar
- Ma, N., Fan, X., Quan, X., & Zhang, Y. (2009). Ag–TiO2/HAP/Al2O3 bioceramic composite membrane: fabrication, characterization and bactericidal activity. Journal of Membrane Science, 336(1–2), 109–117.CrossRefGoogle Scholar
- Macwan, D. P., Dave, P. N., & Chaturvedi, S. (2011). A review on nano-TiO2 sol–gel type syntheses and its applications. Journal of Materials Science, 46(11), 3669–3686.CrossRefGoogle Scholar
- Mai, L., Wang, D., Zhang, S., Xie, Y., Huang, C., & Zhang, Z. (2010). Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Applied Surface Science, 257(3), 974–978.CrossRefGoogle Scholar
- Morikawa, T., Irokawa, Y., & Ohwaki, T. (2006). Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation. Applied Catalysis A: General, 314(1), 123–127.CrossRefGoogle Scholar
- Necula, B. S., Apachitei, I., Tichelaar, F. D., Fratila-Apachitei, L. E., & Duszczyk, J. (2011). An electron microscopical study on the growth of TiO2-Ag antibacterial coatings on Ti6Al7Nb biomedical alloy. Acta Biomaterialia, 7(6), 2751–2757.CrossRefGoogle Scholar
- Necula, B. S., van Leeuwen, J. P., Fratila-Apachitei, L. E., Zaat, S. A., Apachitei, I., & Duszczyk, J. (2012). In vitro cytotoxicity evaluation of porous TiO(2)-Ag antibacterial coatings for human fetal osteoblasts. Acta Biomaterialia, 8(11), 4191–4197.CrossRefGoogle Scholar
- Perkas, N., Lipovsky, A., Amirian, G., Nitzan, Y., & Gedanken, A. (2013). Biocidal properties of TiO2 powder modified with Ag nanoparticles. Journal of Materials Chemistry B, 1(39), 5309–5316.Google Scholar
- Selvam, S., Rajiv Gandhi, R., Suresh, J., Gowri, S., Ravikumar, S., & Sundrarajan, M. (2012). Antibacterial effect of novel synthesized sulfated beta-cyclodextrin crosslinked cotton fabric and its improved antibacterial activities with ZnO, TiO2 and Ag nanoparticles coating. International Journal of Pharmaceutics, 434(1–2), 366–374.CrossRefGoogle Scholar
- Tan, S. X., Tan, S. Z., Chen, J. X., Liu, Y. L., & Yuan, D. S. (2009). Preparation and properties of antibacterial TiO2@C/Ag core-shell composite. Science and Technology of Advanced Materials, 10(4), 045002.CrossRefGoogle Scholar
- Tong, T., et al. (2013). Effects of material morphology on the phototoxicity of nano-TiO2 to bacteria. Environmental Science & Technology, 47(21), 12486–12495.CrossRefGoogle Scholar
- Wei, L., Wang, H., Wang, Z., Yu, M., & Chen, S. (2015). Preparation and long-term antibacterial activity of TiO2 nanotubes loaded with Ag nanoparticles and Ag ions. RSC Advances, 5(91), 74347–74352.CrossRefGoogle Scholar
- Yao, Y., Ohko, Y., Sekiguchi, Y., Fujishima, A., & Kubota, Y. (2008). Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 85(2), 453–460.CrossRefGoogle Scholar