Advertisement

Using Spectrometric Colour Measurement for the Prediction of Soil PCBs in a Contaminated Site of Southern Italy

  • Valeria AnconaEmail author
  • Natalia Leone
  • Ciro Galeone
  • Giuseppe Bagnuolo
  • Vito Felice Uricchio
  • Antonio P. Leone
Article
  • 106 Downloads

Abstract

Soil contamination with polychlorinated biphenyls (PCBs) is one the most relevant environmental problem in the SIN (Site of National Interest) of Taranto (Apulia Region, Southern Italy) and the surrounding area. Evaluation of PCB contents and their spatial distribution is an essential pre-requisite for soil remediation. Conventional laboratory analyses, although useful and irreplaceable for a precise and detailed evaluation of these contaminants, are costly and time-consuming, thus not very suitable for investigation over large areas. Then, there is a need to develop/validate alternative, rapid and cost-effective techniques, to use as substitutive of integrative to conventional analytical approaches. In this study, the usefulness of soil colour, based on spectrometric measurements, coupled with regression analysis, was assessed. Until now, never an analogous investigation has been realised. Twenty-eight soil samples, previously collected within an area (the ex-MATRA) highly contaminated by the disposal of oil used as dielectric fluid, composed by a mixture of PCB congeners, were used in the investigation. Colour coordinates in different colour systems were calculated from spectroradiometric measurements over the soil samples. Eighteen PCB congeners (i.e. 12 dioxin-like PCBs and six non-dioxin-like “indicator” PCBs), their sum (PCBs18) and the extractable organic halogen content (EOX)—which is an expression of the total content of halogen in organochlorine compounds, including the PCBs—were determined through conventional laboratory analysis. Simple linear regression analysis was carried out to predict the values of PCBs and EOX on the basis of colour variables. Excellent predictive models (R2 > 0.80) for PCBs18 and EOX, as well as for some of the individual PCB congener, resulted from the regression analysis. Thus, spectroscopic determination of soil colour can be considered as a promising tool for a rapid screening of PCBs in contaminated soils.

Keywords

Spectrometric colour measurement Polychlorinated biphenyls Regression analysis 

Notes

Acknowledgements

We wish to thank Dr. Giuseppe Mascolo (IRSA-CNR) for his useful comments and discussion. Also, we thank Ruggero Ciannarella (IRSA-CNR) and Nicoletta Rapanà (IBBR-CNR) for their precious help in the EOX data assessment.

Supplementary material

11270_2019_4103_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1129 kb)

References

  1. Ameyan, O. (1984). Surface soil variability of a map unit on Niger river alluvium. Soil Science Society of America Journal, 50, 1289–1293.CrossRefGoogle Scholar
  2. Ancona, V., Barra Caracciolo, A., Grenni, P., Di Lenola, M., Campanale, C., Calabrese, A., Uricchio, V. F., Mascolo, G., & Massacci, A. (2017). Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in southern Italy. New Biotechnology, 38, 65–73.CrossRefGoogle Scholar
  3. APAT, Agenzia per la protezione dell’ambiente e per i servizi tecnici (2005). Annuario dei dati ambientali, Edizione 2004, Roma (In Italian).Google Scholar
  4. APAT, Agenzia per la protezione dell’ambiente e per i servizi tecnici (2006). Diossine furani e PCB. IGER Srl, Roma, pp 71 (in Italian).Google Scholar
  5. Asplund, G., & Grimvall, A. (1991). Organohalogens in nature. Environmental Science & Technology, 25, 1346–1350.CrossRefGoogle Scholar
  6. ATSDR (2000). Toxicological Profile for Polychlorinated Biphenyls (Update). Agency for Toxic Substances and Disease Registry, US Public Health Service, Atlanta, GA, USA.Google Scholar
  7. Baars, A. J., Bakker, M. I., Baumann, R. A., Boon, P. E., Freijer, J. I., Hoogenboom, L. A. P., Hoogerbrugge, R., van Klaveren, J. D., Liem, A. K. D., Traag, W. A., & de Vries, J. (2004). Dioxins, dioxin-like PCBs and non-dioxin-like PCBs in foodstuffs: occurrence and dietary intake in The Netherlands. Toxicology Letters, 151, 51–61.CrossRefGoogle Scholar
  8. Barrett, L. R. (2002). Spectrophotometric color measurement in situ in well drained sandy soils. Geoderma, 108, 49–77.CrossRefGoogle Scholar
  9. Baumgardner, M. F., Silva, L. F., Biehl, L. L., & Stoner, R. (1985). Reflectance properties of soils. Advances in Agronomy, 38, 1–44.Google Scholar
  10. Ben-Dor, E., Irons, J. A., & Epema, A. (1999). Soil spectroscopy. In A. Rencz (Ed.), Manual of remote sensing (Third ed., pp. 111–189). Chichester, Weinheim, Brisbane, Singapore, Toronto: J. Wiley & Sons Inc. New-York.Google Scholar
  11. Brandon, E. (2013). Global approaches to site contamination law (p. 378). Netherlands: Springer.CrossRefGoogle Scholar
  12. Calabrò, G., Leone, A.P., Tosca, M. (2017). Software for spectroradiometric data processing. CNR-ISAFoM, alpha-realease 3.0, for Mac.Google Scholar
  13. Caliandro, A., Lamaddalena, N., Stelluti, M., Stetudo, P. (2005). Caratterizzazione agroecologica della Regione Puglia in funzione della potenzialità produttiva. Progetto ACLA 2. IDEAPRINT, Bari, pp. 179 (In Italian).Google Scholar
  14. Canadian Council of Ministers of the Environment, Canadian Soil Quality Guidelines for the protection of the Environment and Human Health (1999). http://ceqg-rcqe.ccme.ca/download/en/274, (accessed 13 June 2018).
  15. Cervelle, B., Malezieux, J. M., & Caye, R. (1977). Expression quantitative de la couleur liée à la réflectance diffuse de qualques roches et minéraux. Bull. Soc. Fr. Minéral Cristall., 100, 185–195 (In French).Google Scholar
  16. Chao, H. R., Wang, S. L., Lin, L. Y., Lee, W. J., & Papke, O. (2007). Placental transfer of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in Taiwanese mothers in relation to menstrual cycle characteristics. Food and Chemical Toxicology, 45, 259–265.CrossRefGoogle Scholar
  17. CIE, Commission Internationale de l’Eclairage. (1931). CIE proceedings. Cambridge, UK: Cambridge University Press.Google Scholar
  18. CIE, Commission Internationale de l’Eclairage (1978). Recommendations on uniform color spaces, color differences, and psychometric color terms. Calorimetry CIE, Paris Suppl. no. 2 to Publication n° 15.Google Scholar
  19. Contreras Lopez, M. C. (2003). Determination of potentially bioaccumulating complex mixtures of organochlorine compounds in wastewater: a review. Environment International, 28, 751–759.CrossRefGoogle Scholar
  20. Costantini, E. A. C. (2007). Linee guida dei metodi di rilevamento e informatizzazione dei dati pedologici (p. 279). Ministero delle Politiche Agricole e Forestali.Google Scholar
  21. DeKoning, E.P., Karmaus, W. (2000). PCB exposure in utero and via breast milk. A review. J. Expo. Analysis Environ. Epidemiol., 10, 285–293.Google Scholar
  22. Dodge, Y. (2008). Normal probability plot. In: The Concise Encyclopedia of Statistics. Springer, New York, NY.  https://doi.org/10.1007/978-0-387-32833-1.CrossRefGoogle Scholar
  23. Escadafal, R. (1993). Remote sensing of soil color: principles and applications. Remote Sensing Reviews, 7, 261–279.CrossRefGoogle Scholar
  24. Fernandez, R. N., & Schulze, D. G. (1986). Calculation of soil color from reflectance spectra. Soil Science Society of America Journal, 51, 1277–1282.CrossRefGoogle Scholar
  25. Frova, A. (1994). Sintesi dei colori e colorimetria. In Il Colore, a cura di Andrea Frova, Le Scienze, quaderni, 85–95.Google Scholar
  26. Hair, J. F., Jr., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
  27. Hayer, F., Wagner, P., & Pihan, J. C. (1996). Monitoring of extractable organic halogens (EOX) in chlorine bleached pulp and paper mill effluents using four species of transplanted aquatic mollusks. Chemosphere, 33, 2321–2334.CrossRefGoogle Scholar
  28. Holoubek, I., Dusek, L., Sanka, M., Hofman, J., Cupr, P., Jarkovský, J., & Klanova, J. (2009). Soil burdens of persistent organic pollutants-their levels, fate and risk. Part I. Variation of concentration ranges according to different soil uses and locations. Environmental Pollution, 157, 3207–3217.  https://doi.org/10.1016/j.envpol.2009.05.031.CrossRefGoogle Scholar
  29. Hung, S.-T. (2016). Instrument: colorimeter. In Luo M. R. (Ed): Encyclopedia of color science and technology. Springer reference, pp 770–772.Google Scholar
  30. Kanakaanpa, H., & Tissari, J. (1994). Analysis for EOX and AOX in two industry influenced coastal areas in the Gulf of Finland. Chemosphere, 29, 241–255.CrossRefGoogle Scholar
  31. Kannan, K., Falandysz, J., Yamashita, N., Tanabe, S., & Tatsukawa, R. (1992). Temporal trends of organochlorine concentrations in cod liver oil from the Southern Baltic Proper 1971–1989. Marine Pollution Bulletin, 24, 358–363.CrossRefGoogle Scholar
  32. Kannan, K., Kawano, M., Kashima, Y., Matsui, M., & Giesy, J. P. (1999). Extractable organohalogens (EOX) in sediment biota collected at an Estuarine March near a former chloroalkali facility. Environmental Science & Technology, 33, 1004–1008.CrossRefGoogle Scholar
  33. Kostamo, A., Vijanen, M., Pellien, J., & Kukkonen, J. (2000). EOX and organochlorine compounds in fish and ringed seal samples from Lake Lagoda, Russia. Chemosphere, 41, 1733–1740.CrossRefGoogle Scholar
  34. Laniewski, K. (1998). Halogenated organic matter in precipitation. Linkoping studies in arts and science 176, Linkoping.Google Scholar
  35. Leone, A. P., Ajmar, A., Escadafal, R., & Sommer, S. (1996). Relazioni tra colore e risposta spettrale del suolo. Applicazioni ad un’area di studio dell’Appennino meridionale. Boll. Soc. Ital. Scienza Suolo, 8, 135–158 (In Italian).Google Scholar
  36. Leone, A. P., & Escadafal, R. (2001). Statistical analysis of soil colour and spectroradiometric data for hyperspectral remote sensing of soil properties (example in a southern Italy Mediterranean ecosystem). International Journal of Remote Sensing, 12, 2311–2328.CrossRefGoogle Scholar
  37. Leone, A. P., Viscarra-Rossel, R., Amenta, P., & Buondonno, A. (2012). Prediction of soil properties with PLSR and vis-NIR spectroscopy: application to Mediterranean soils from southern Italy. Current Analytical Chemistry, 8, 283–299.CrossRefGoogle Scholar
  38. Leone, G. (2015). Rinasce l’area dell’ex Matra: un mare di PCB bonificato (in English: The area of the ex Matra revives: a sea of PCB rehabilitated). Corriere di Taranto, http://www.corriereditaranto.it/2015/12/11/rinsace-larea-dellex-matra-un-mare-di-pcb-bonificato/ (In Italian).
  39. Li, J., Huang, Y., Ye, R., Yuan, G.-L., Wu, H.-Z., Han, P., & Fu, S. (2015). Source identification and health risk assessment of persistent organic pollutants (POPs) in the topsoils of typical petrochemical industrial area in Beijing, China. Journal of Geochemical Exploration, 158, 177–185.  https://doi.org/10.1016/j.gexplo.2015.07.014.CrossRefGoogle Scholar
  40. Longnecker, M. P. (2015). Endocrine and other human health effects of environmental and dietary exposure to PCBs. In L. W. Robertson & L. G. Hansen (Eds.), PCBs: recent advances in environmental toxicology and health effects (pp. 111–118). Kentucky, USA: Univ. Kentucky Scholarly Pub.Google Scholar
  41. Lundgren, K. (2003). Properties and Analysis of Dioxin-Like Compounds in Marine Samples from Sweden. Akademisk avhandling (p. 66). Umeå, Sweden: Environmental chemistry Department of chemistry Umeå University.Google Scholar
  42. Man, Y. B., Chow, K. L., Xing, G. H., Chan, J. K. Y., Wu, S. C., & Wong, M. H. (2017). A pilot study on health risk assessment based on body loadings of PCBs of lactating mothers at Taizhou, China, the world’s major site for recycling transformers. Environmental Pollution, 227, 364–371.CrossRefGoogle Scholar
  43. Marcus, R. T. (1998). The measurement of color. In K. Nassau (Ed.), Color for science (pp. 31–96). Amsterdam: Art and Technology. Elsevier.Google Scholar
  44. Martinis, B., & Robba, E. (1971). Note illustrative della Carta Geologica d’Italia alla scala 1:100000, Foglio 202, Taranto. In Ministero dell’Industria, del Commercio e dell’Artigianato. Direzione Generale Delle Miniere: Servizio Geologico d’Italia (In Italian).Google Scholar
  45. Mascolo, G., De Tommaso, B., Bagnuolo, G., Ciannarella, R., Rapanà, N., Lopez, A. (2005). Potenziamento ed implementazione della banca dati tossicologica del suolo e prodotti derivati, IRSA-CNR internal report within the Project “Toxicological profiles of chemicals in soil”, pp 1–144 (In Italian).Google Scholar
  46. Mascolo, G., Bagnuolo, G., De Tommaso, B., & Uricchio, V. F. (2013). Direct analysis of polychlorinated biphenyls in heavily contaminated soils by thermal desorption/gas chromatography/mass spectrometry. International Journal of Environmental Analytical Chemistry, 93(9), 1030–1042.  https://doi.org/10.1080/03067319.2012.708745.CrossRefGoogle Scholar
  47. Mathieu, R., Pouget, M., Cervelle, B., & Escadafal, R. (1998). Relationships between satellite-based radiometric indices simulated using laboratory reflectance data and typic soil color of an arid environment. Remote Sensing of Environment, 66, 17–28.CrossRefGoogle Scholar
  48. Melville, M. D., & Atkinson, G. (1985). Soil color: its measurement and its designation in models of uniform color space. Journal of Soil Science, 36, 495–512.CrossRefGoogle Scholar
  49. Milton, E. J., Rollin, E. M., & Emry, D. R. (1995). Advances in field spectroscopy. In F. M. Danson & S. E. Plummer (Eds.), Advances in environmental remote sensing (pp. 9–32). Chichester: John Wiley and Sons.Google Scholar
  50. Mokma, D. L. (1993). Color and amorphous materials in Spodosols from Michigan. Soil Science Society of America Journal, 57, 125–138.CrossRefGoogle Scholar
  51. Munsell Color Company. (1975). Munsell soil color charts. Baltimore, MD: Macbeth Division of Kollmorgen.Google Scholar
  52. Nam, J. J., Gustafsson, O., Kurt-Karakus, P., Breivik, K., Steinnes, E., & Jones, K. C. (2008). Relationships between organic matter, black carbon and persistent organic pollutants in European background soils: Implications for sources and environmental fate. Environmental Pollution, 156, 809–817.CrossRefGoogle Scholar
  53. Niemirycz, E., Kaczmarczyk, A., & Błazejowski, J. (2005). Extractable organic halogens (EOX) in sediments from selected Polish rivers and lakes—a measure of the quality of the inland water environment. Chemosphere, 61, 92–97.CrossRefGoogle Scholar
  54. Pascuzzi, S., Russo, G., Scarascia Mugnozza, G., Verdiani, G., & Lagattolla, G. (2013). Contamination of the environmental matrices in agricultural areas produced by industrial discharges: the case study of the land of the city of Statte (Taranto, Southern Italy). In: Four decades of progress in monitoring and modelling of processes in the soil-plant-atmosphere system: application and challenges. Procedia Environmental Sciences, 19, 671–680.CrossRefGoogle Scholar
  55. Pellinen, J., Ruokolainen, M., Makela, P., & Taskinen, J. (1994). Organic halogen compounds, EOX, in mussels from a clean lake and a pulp mill recipient. Chemosphere, 29, 1515–1526.CrossRefGoogle Scholar
  56. Post, D. F., Bryant, R. B., Batchily, A. K., Huete, A. R., Levine, S. J., Mays, M. D., & Escadafal, R. (1993). Correlations between field and laboratory measurements of soil color. In soil color (Bigham J.M. and Ciolkosz E.J. Eds). SSSA Special Publication Number, 31, 35–49.Google Scholar
  57. Ruiz, F. J., Agell, N., Angulo, C., & Sanchez, M. (2012). A qualitative learning system for human sensory abilities in adjustment tasks. In Proceeding of the 26th International workshop on qualitative reasoning. At Playa Vista, California: Estados Unidos de América.Google Scholar
  58. Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.  https://doi.org/10.1021/ac60214a047.CrossRefGoogle Scholar
  59. Schulze, D. G., Nagel, J. L., Van Scoyoc, G. E., Henderson, T. L., Baumgardner, M. F., & Scott, D. E. (1993). Significance of organic matter in determining soil colors. In soil color (Bigham J.M. and Ciolkosz E.J. Eds). SSSA Special Publication Number, 31, 71–90.Google Scholar
  60. Schuster, J. K., Gioia, R., Moeckel, C., Agarwal, T., Bucheli, T. D., Breivik, K., Steinnes, E., & Jones, K. C. (2011). Has the burden and distribution of PCBs and PBDEs changed in European background soils between 1998 and 2008? Implications for sources and processes. Environmental Science & Technology, 45(17), 7291–7297.CrossRefGoogle Scholar
  61. Sheinost, A. (2000). Color, in Schwertmann U. and Cornell R.M. “Iron oxides in the laboratory. Preparation and Characterization”. Wiley-VCH Verlag, pp. 27–42.Google Scholar
  62. Škrbić, B. D., Marinković, V., Antić, I., & Petrović Gegić, A. (2017). Seasonal variation and health risk assessment of organochlorine compounds in urban soils of Novi Sad, Serbia. Chemosphere, 181, 101–110.CrossRefGoogle Scholar
  63. Strek, H. J., & Weber, J. B. (1982). Behaviour of polychlorinated biphenyls (PCBs) in soils and plants. Environmental Pollution, 28, 291–312.CrossRefGoogle Scholar
  64. Sun, W., & Zhang, X. (2017). Estimating soil zinc concentrations using reflectance spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 58, 126–133.CrossRefGoogle Scholar
  65. Torrent, J., Barrón, V. (1993). Laboratory measurement of soil color: theory and practice. In soil color (Bigham J.M. and Ciolkosz E.J. Eds). SSSA Special Publication Number, 31, 21–33.Google Scholar
  66. Vigano, L., Arillo, A., Buffagni, A., Camusso, M., Ciannarella, R., Crosa, G., Falugi, C., Galassi, S., Guzzella, L., Lopez, A., Mingazzini, M., Pagnotta, R., Patrolecco, L., Tartari, G., & Valsecchi, S. (2003). Quality assessment of bed sediments of the Po River (Italy). Water Research, 37, 501–518.CrossRefGoogle Scholar
  67. Viscarra Rossel, R.A. (2004). ColoSol: executable software to perform colour space model transformations for soil colour. http://www.usyd.edu.au/su/agric/acpa/people/rvrossel/soft02.htm.
  68. Viscarra Rossel, R. A. (2006). Colour space models for soil science. Geoderma, 133, 320–337.CrossRefGoogle Scholar
  69. Vittinghoff, E., Glidden, D. V., Shiboski, S. C., & McCulloch, C. E. (2005). Regression methods in biostatistics (p. 340). New York: Springer.Google Scholar
  70. Vuik, J. (1999). Speeding up the determination of TPH and EOX in soil with Soxtec Avanti. Foss Group J. Technol. Food, Dairy Agric. The Analyst, 23, 9–13.Google Scholar
  71. Wallkill Color (2017). Munsel Conversion Software. http://wallkillcolor.com.
  72. WHO, World Health Organization (2003). Poychlorinated biphenyls: human health aspects. CICAD, Concise International Chemical Assessment Document 55, Geneva, pp 60.Google Scholar
  73. WHO, World Health Organization (2016). Safety evaluation of certain food additives and contaminants. Supplement 1: non-dioxin-like polychlorinated biphenyls. WHO Food Additives Series, 71-S1, pp 442.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Valeria Ancona
    • 1
    Email author
  • Natalia Leone
    • 1
  • Ciro Galeone
    • 1
    • 2
  • Giuseppe Bagnuolo
    • 1
  • Vito Felice Uricchio
    • 1
  • Antonio P. Leone
    • 3
  1. 1.Istituto di Ricerca Sulle Acque del Consiglio Nazionale delle RicercheBari (BA)Italy
  2. 2.Dipartimento di BiologiaUniversità degli studi di Bari Aldo MoroBari (BA)Italy
  3. 3.Istituto per i Sistemi Agricoli e Forestali del Mediterraneo del Consiglio Nazionale delle RicercheNaplesItaly

Personalised recommendations