Advertisement

Water, Air, & Soil Pollution

, 230:34 | Cite as

Degradation of Paracetamol Adsorbed on Inorganic Supports Under UV Irradiation

  • Patricio BaezaEmail author
  • Paulina Aballay
  • Camila Matus
  • Esteban Camú
  • M. Fernanda Ramirez
  • Johanna Eyzaguirre
  • Juan Ojeda
Article
  • 42 Downloads

Abstract

The purpose of this piece of work is to study the process of adsorption of paracetamol on activated carbon, silica and alumina and their degradation using UV radiation. The results demonstrate a higher adsorption of paracetamol on alumina and activated carbon, while a minor value was observed in the case of silica. The H-bonding and π-stacking interactions between paracetamol and supports can be explained by the variation in the adsorption capacity values. When the paracetamol adsorbed was irradiated with two different UV irradiance values (59.78 mW cm−2 and 119.56 mW cm−2) for 120 min, the higher degradation percentage was observed on activated carbon with a value of 79%. In the case of alumina and silica, the maximum percentages obtained were 65% and 77%, respectively. The incorporation of H2O2 in the reaction medium increases the rate of degradation, mainly at higher irradiance, reaching the maximum values in less time.

Keywords

Paracetamol Emerging contaminant Adsorption Inorganic supports UV irradiation 

Notes

References

  1. Abdel-Wahaba, A., Al-Shirbinib, A., Mohameda, O., & Nasra, O. (2017). Photocatalytic degradation of paracetamol over magnetic flower-like TiO2/Fe2O3 core-shell nanostructures. Journal of Photochemistry and Photobiology A: Chemistry, 347, 186–198.CrossRefGoogle Scholar
  2. Andrieux, D., Jestin, J., Kervarec, N., Pichon, R., Privat, M., & Olier, R. (2004). Adsorption mechanism of substituted pyridines on silica suspensions: an NMR study. Langmuir, 20, 10591–10598.CrossRefGoogle Scholar
  3. Desale, A., Kamble, S., & Deosarkar, M. (2013). Photocatalytic degradation of paracetamol using degussa TiO2 photocatalyst. International Journal of Chemical & Physical Sciences, 2, 140–148.Google Scholar
  4. Eda, G., Lin, Y. Y., Mattevi, C., Yamaguchi, H., Chen, H. A., Chen, I. S., Chen, C. W., & Chhowalla, M. (2010) Blue photoluminescence from chemically derived graphene oxide. Advanced Materials, 22, 505–509.Google Scholar
  5. Ferreira, R. C., De Lima, H. H. C., Cândido, A. A., Couto, O. M., Arroyo, P. A., De Carvalho, K. Q., Gauze, G. F., & Barros, M. A. (2015a). Adsorption of paracetamol using activated carbon of dende and babassu coconut mesocarp. World Academy of Science, Engineering and Technology International Journal of Biotechnology and Bioengineering, 9, 717–722.Google Scholar
  6. Ferreira, R. C., Couto, O. M., De Carvalho, K. Q., & Arroyo, B. M. A. (2015b). Effect of solution pH on the removal of paracetamol by activated carbon of dende coconut mesocarp. Chemical and Biochemical Engineering Quarterly, 29, 47–53.CrossRefGoogle Scholar
  7. Fioressi, S., & Arce, R. (2005). Photochemical transformations of benzo [e] pyrene in solution and adsorbed on silica gel and alumina surfaces. Environmental Science & Technology, 39, 3646–3655.CrossRefGoogle Scholar
  8. Ghafoori, S., Mowla, A., Jahani, R., Mehrvar, M., & Chan, P. (2015). Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modelling. Journal of Environmental Management, 150, 128–137.CrossRefGoogle Scholar
  9. Gogate, P., & Pandit, A. (2004). A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Advances in Environmental Research, 49(8), 501–551.CrossRefGoogle Scholar
  10. Haque, M., & Muneer, M. (2007). Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. Journal of Hazardous Materials, 145, 51–57.CrossRefGoogle Scholar
  11. Harris, M., Karper, E., Stacks, G., Hoffman, D., DeNiro, R., Cruz, P., et al. (2001). Writing labs and the Hollywood connection. Journal of Film Writing, 44(3), 213–245.Google Scholar
  12. Jallouli, N., Elghniji, K., Trabel, H., & Ksibi, M. (2017). Photocatalytic degradation of paracetamol on TiO2 nanoparticles and TiO2/cellulosic fiber under UV and sunlight irradiation. Arabian Journal of Chemistry, 10, S3640–S3645.CrossRefGoogle Scholar
  13. Kanakaraju, D., Glass, B., & Oelgemöller, M. (2018). Advanced oxidation process mediated removal of pharmaceuticals from water: a review. Journal of Environmental Management, 219, 189–207.CrossRefGoogle Scholar
  14. Karunakaran, C., Dhanalakshmi, R., Manikandan, G., & Gomathisankar, P. (2011). Photodegradation of carboxylic acids on Al2O3 and SiO2 nanoparticles. Indian Journal of Chemistry, 50, 163–170.Google Scholar
  15. Klosek, S., & Raftery, D. (2001). Visible light driven V-doped TiO2 photocatalyst and its photo-oxidation of ethanol. Journal of Physical Chemistry B, 105, 2815–2819.CrossRefGoogle Scholar
  16. Lladó, J., Lao-Luque, C., Ruiz, B., Fuente, E., Solé-Sardans, M., & Dorado, A. (2015). Role of activated carbon properties in atrazine and paracetamol adsorption equilibrium and kinetics. Process Safety and Environmental Protection, 95, 51–59.CrossRefGoogle Scholar
  17. Lorphensri, O., Intravijit, J., Sabatini, A. D., Kibbey, T., Osathaphan, K., & Saiwan, C. (2006). Sorption of acetaminophen, 17 α-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic médium. Water Research, 40, 1481–1491.CrossRefGoogle Scholar
  18. Luna, M., Veciana, M., Su, C., & Lu, M. (2012). Acetaminophen degradation by electro-Fenton and photoelectro-Fenton using a double cathode electrochemical cell. Journal of Hazardous Materials, 217, 200–207.CrossRefGoogle Scholar
  19. Mameri, Y., Debbache, N., Benacherine, M., Seraghni, N., & Sehili, T. (2016). Heterogeneous photodegradation of paracetamol using goethite/H2O2 and goethite/oxalic acid systems under artificial and natural light. Journal of Photochemistry and Photobiology A: Chemistry, 315, 129–137.CrossRefGoogle Scholar
  20. Matus, C., Camú, E., Villarroel, M., Ojeda, J., & Baeza, P. (2016). Study of the removal of 4–nitrophenol from aqueous media by adsorption on different materials. Journal of the Chilean Chemical Society, 61, 2898–2902.CrossRefGoogle Scholar
  21. Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42, 83–94.CrossRefGoogle Scholar
  22. Peralta, C., Camú, E., Bassi, R., Villarroel, M., Ojeda, J., & Baeza, P. (2016). Denitrogenation by adsorption of pyridine on Ni/support adsorbents. Journal of the Chilean Chemical Society, 61, 3211–3213.CrossRefGoogle Scholar
  23. Quesada, I., Julcour, C., Jáuregui, U., Wilhelm, A., & Delmas, H. (2009). Sonolysis of levodopa and paracetamol in aqueous solutions. Ultrasonics Sonochemistry, 16, 610–616.CrossRefGoogle Scholar
  24. Sellaoui, L., Lima, E., Dotto, G., & Lamine, A. (2017). Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies. Journal of Molecular Liquids, 234, 375–381.CrossRefGoogle Scholar
  25. Siré, I., Garrido, J., Rodriguez, R., Cabot, P., Centellas, F., Arias, C., & Brillas, E. (2006). Electrochemical degradation of paracetamol from water by catalytic action of Fe2+, Cu2+, and UVA light on electrogenerated hydrogen peroxide. Journal of the Electrochemical Society, 153, D1–D9.CrossRefGoogle Scholar
  26. Sophia, C., & Lima, E. (2018). Removal of emerging contaminants from the environment by adsorption. Ecotoxicology and Environmental Safety, 161, 57–63.CrossRefGoogle Scholar
  27. Terzyk, A. (2004). Molecular properties and intermolecular forces—factors balancing the effect of carbon surface chemistry in adsorption of organics from dilute aqueous solutions. Journal of Colloid and Interface Science, 275, 9–29.CrossRefGoogle Scholar
  28. Thi, V., & Lee, B. (2017). Effective photocatalytic degradation of paracetamol using La-doped ZnO photocatalyst under visible light irradiation. Materials Research Bulletin, 96, 171–182.CrossRefGoogle Scholar
  29. Tortet, L., Ligner, E., Blanluet, W., Noguez, P., Marichal, C., Schäf, O., & Paillaud, J. (2017). Adsorptive elimination of paracetamol from physiological solutions: interaction with MFI-type zeolite. Microporous and Mesoporous Materials, 252, 188–196.CrossRefGoogle Scholar
  30. Velo-Gala, I., López-Peñalver, J., Sánchez-Polo, M., & Rivera-Utrilla, J. (2017). Applied Catalysis B: Environmental (Vol. 207, pp. 412–423).Google Scholar
  31. Villaescusa, I., Fiol, N., Poch, J., Bianchi, A., & Bazzicalupi, C. (2011). Mechanism of paracetamol removal by vegetable wastes: the contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Desalination, 270, 135–142.CrossRefGoogle Scholar
  32. Vogna, D., Marotta, R., Napolitano, A., & D’Ischia, M. (2002). Advanced oxidation chemistry of paracetamol. UV/H2O2-induced hydroxylation/degradation pathways and 15N-aided inventory of nitrogenous breakdown products. Journal of Organic Chemistry, 67, 6143–6151.CrossRefGoogle Scholar
  33. Wu, Y., Qi, H., Shi, C., Ma, R., Liu, S., & Huang, Z. (2017). Preparation and adsorption behaviors of sodium alginate-based adsorbent-immobilized β- cyclodextrin and graphene oxide. The Royal Society of Chemistry, 7, 31549–31557.Google Scholar
  34. Yang, L., Yu, L., & Ray, M. (2008). Degradation of paracetamol in aqueous solutions by TiO2 photocatalysis. Water Research, 50, 343488.Google Scholar
  35. Yang, L., Yu, L., & Ray, M. (2009). Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. Environmental Science and Technology, 2009(43), 460–465.CrossRefGoogle Scholar
  36. Zhang, X., Wu, F., Wu, X., Chen, P., & Deng, N. (2008). Photodegradation of acetaminophen in TiO2 suspended solution. Journal of Hazardous Materials, 157, 300–307.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Patricio Baeza
    • 1
    Email author
  • Paulina Aballay
    • 1
  • Camila Matus
    • 1
  • Esteban Camú
    • 1
  • M. Fernanda Ramirez
    • 1
  • Johanna Eyzaguirre
    • 1
  • Juan Ojeda
    • 2
  1. 1.Instituto de QuímicaPontificia Universidad Católica de ValparaísoValparaísoChile
  2. 2.Facultad de FarmaciaUniversidad de ValparaísoValparaísoChile

Personalised recommendations