Advertisement

Water, Air, & Soil Pollution

, 230:49 | Cite as

Leaching of Free and Conjugate Natural Estrogens in Soil Monoliths

  • Francis X. M. CaseyEmail author
  • Diana Selbie
  • Heldur Hakk
  • Karl G. Richards
Article

Abstract

Natural free estrogens found in animal manures are potent endocrine-disrupting compounds. Environmental detections can be caused by such processes as physical and chemical non-equilibrium and colloidal or conjugate facilitate transport. Antecedent or “legacy” concentrations of estrogens resident in soil may also contribute significantly to environmental detections. The objective of this study was to measure and understand the dominant causes contributing to estrogen detections in the environment from a grazed system. To achieve this objective, the effluent of undisturbed lysimeters constructed from soils of fields grazed by dairy cows (Bos taurus) was monitored for free and conjugated estrogens. Four lysimeters were dosed with urine (Urine) and four only received water (Control). Water transfer for all lysimeters was similar, and all lysimeters were near field capacity for the duration of the experiment. Rapid transport of a conservative bromide tracer suggested that preferential flow was an important physical non-equilibrium transport process. Free estrogens and conjugated estrogens (17β-estradiol (E2), estrone (E1), 17β-estradiol-17-sulfate (E2-17S), 17β-estradiol-3-glucuronide (E2-3G), estrone-sulfate (E1-S)) were detected in the source urine (E2 = 17,248 ng/L, E1 = 1006 ng/L, E2-3G = 967 ng/L, E2-17S = 886,456 ng/L, E1-S = 1730 ng/L). These same free and conjugated estrogens, in addition to estriol (E3), were all detected frequently in both Control and Urine lysimeters (detection concentration ranks: E3 > E2-17S = E2 > E2-3G = E1 = E1-3S). Total potential estrogenicity in the effluent of the Control and Urine was also similar, indicating the presence of antecedent estrogens was the dominant contribution to estrogenic detections. Additionally, the frequent detection of conjugates in the lysimeter effluent was important, because it indicated that conjugates were stable in soil but had greater potential mobility than free estrogens.

Keywords

Lysimeter Estrogens Estrogen conjugates Soil Preferential transport 

Notes

Acknowledgements

The first author gratefully acknowledges funding from the National Science Foundation under Grant No. 0730492. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. This work was also partially supported by Agriculture and Food Research Initiative Competitive Grant no. 2010-65102-20400 from the USDA National Institute of Food and Agriculture. The authors are also grateful for the funding that was provided through the Research Stimulus Fund Program administered by the Department of Agriculture & Food under the National Development Plan 2007–2013 RSF 07536. The second author is grateful for the funding provided by Teagasc through the Walsh Fellowship Scheme. The authors are very grateful to Colleen Pfaff for her dedication in preparing the samples for mass spectral analyses and to Jason Holthusen for performing the mass spec analysis. The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader, but it does not constitute an official endorsement or approval by the United States Department of Agriculture, the Agricultural Research Service, or the Food Safety and Inspection Service.

References

  1. Bai, X., Casey, F. X. M., Hakk, H., DeSutter, T. M., Oduor, P. G., & Khan, E. (2013). Dissipation and transformation of 17β-estradiol-17-sulfate in soil-water systems. Journal of Hazardous Materials, 260, 733–739.CrossRefGoogle Scholar
  2. Bai, X., Casey, F. X. M., Hakk, H., DeSutter, T. M., Oduor, P. G., & Khan, E. (2015). Sorption and degradation of 17β-estradiol-17-sulfate in sterilized soil-water systems. Chemosphere, 119, 1322–1328.CrossRefGoogle Scholar
  3. Bai, X. L., Shrestha, S. L., Casey, F. X. M., Hakk, H., & Fan, Z. S. (2014). Modeling coupled sorption and transformation of 17b-estradiol-17-sulfate in soil-water systems. Journal of Contaminant Hydrology, 168, 17–24.CrossRefGoogle Scholar
  4. Belfroid, A. C., Van der Horst, A., Vethaak, A. D., Schafer, A. J., Rijs, G. B. J., Wegener, J., & Cofino, W. P. (1999). Analysis and occurrence of estrogenic hormones and their glucuronides in surface water and waste water in the Netherlands. Science of the Total Environment, 225, 101–108.CrossRefGoogle Scholar
  5. Cameron, K. C., Smith, N. P., Mclay, C. D. A., Fraser, P. M., Mcpherson, R. J., Harrison, D. F., & Harbottle, P. (1992). Lysimeters without edge flow—an improved design and sampling procedure. Soil Science Society of America Journal, 56, 1625–1628.CrossRefGoogle Scholar
  6. Chambers, K. B., Casey, F. X. M., Hakk, H., DeSutter, T. M., & Shappell, N. W. (2014). Potential bioactivity and association of 17b-estradiol with the dissolved and colloidal fractions of manure and soil. Science of the Total Environment, 494, 58–64.CrossRefGoogle Scholar
  7. Colucci, M. S., Bork, H., & Topp, E. (2001). Persistence of estrogenic hormones in agricultural soils: I. 17b-estradiol and estrone. Journal of Environmental Quality, 30, 2070–2076.CrossRefGoogle Scholar
  8. Das, B. S., Lee, L. S., Rao, P. S. C., & Hultgren, R. P. (2004). Sorption and degradation of steroid hormones in soils during transport column studies and model evaluation. Environmental Science & Technology, 38, 1460–1470.CrossRefGoogle Scholar
  9. Dennis, S. J., Moir, J. L., Cameron, K. C., Di, H. J., Hennessy, D., & Richards, K. G. (2011). Urine patch distribution under dairy grazing at three stocking rates. Irish journal of agricultural research, 50, 149–160.Google Scholar
  10. Dutta, S., Inamdar, S., Tso, J., Aga, D. S., & Sims, J. T. (2010). Free and conjugated estrogen exports in surface-runoff from poultry litter-amended soil. Journal of Environmental Quality, 39, 1688–1698.CrossRefGoogle Scholar
  11. Escande, A., Pillon, A., Servant, N., Cravedi, J. P., Larrea, F., Muhn, P., Nicolas, J. C., Cavailles, V., & Balaguer, P. (2006). Evaluation of ligand selectivity using reporter cell lines stably expressing estrogen receptor alpha or beta. Biochemical Pharmacology, 71, 1459–1469.CrossRefGoogle Scholar
  12. Fan, Z. S., Casey, F. X. M., Hakk, H., & Larsen, G. L. (2007). Persistence and fate of 17ß-estradiol and testosterone in agricultural soils. Chemosphere, 67, 886–895.CrossRefGoogle Scholar
  13. Fujii, K., Kikuchi, S., Satomi, M., Ushio-Sata, N., & Morita, N. (2002). Degradation of 17β-estradiol by a gram-negative bacterium isolated from activated sludge in a sewage treatment plant in Tokyo, Japan. Applied and Environmental Microbiology, 68, 2057–2060.CrossRefGoogle Scholar
  14. Gall, H. E., Basu, N. B., Mashtare, M. L., Rao, P. S. C., & Lee, L. S. (2016). Assessing the impacts of anthropogenic and hydro-climatic drivers on estrogen legacies and trajectories. Advances in Water Resources, 87, 19–28.CrossRefGoogle Scholar
  15. Gall, H. E., Sassman, S. A., Lee, L. S., & Jafvert, C. T. (2011). Hormone discharges from a Midwest tile-drained agroecosystem receiving animal wastes. Environmental Science & Technology, 45, 8755–8764.CrossRefGoogle Scholar
  16. Griffith, D. R., Soule, M. C. K., Eglinton, T. I., Kujawinski, E. B., & Gschwend, P. M. (2016). Steroidal estrogen sources in a sewage-impacted coastal ocean. Environ Sci-Proc Imp, 18, 981–991.Google Scholar
  17. Hanselman, T. A., Graetz, D. A., & Wilkie, A. C. (2003). Manure-borne estrogens as potential environmental contaminants: a review. Environmental Science & Technology, 37, 5471–5478.CrossRefGoogle Scholar
  18. Hoffmann, B., dePinho, T. G., & Schuler, G. (1997). Determination of free and conjugated oestrogens in peripheral blood plasma, feces and urine of cattle throughout pregnancy. Exp Clin Endocr Diab, 105, 296–303.CrossRefGoogle Scholar
  19. Holbrook, R. D., Love, N. G., & Novak, J. T. (2004). Sorption of 17b-estradiol and 17a-ethinylestradiol by colloidal organic carbon derived from biological wastewater treatment systems. Environmental Science & Technology, 38, 3322–3329.CrossRefGoogle Scholar
  20. Jiang, L. Y., Yang, J., & Chen, J. M. (2010). Isolation and characteristics of 17 beta-estradiol-degrading Bacillus spp. strains from activated sludge. Biodegradation, 21, 729–736.CrossRefGoogle Scholar
  21. Khanal, S. K., Xie, B., Thompson, M. L., Sung, S., Ong, S. K., & van Leeuwen, J. (2006). Fate, transport, and biodegradation of natural estrogens in the environment and engineered systems. Environmental Science & Technology, 40, 6537–6546.CrossRefGoogle Scholar
  22. Kjaer, J., Olsen, P., Bach, K., Barlebo, H. C., Ingerslev, F., Hansen, M., & Sorensen, B. H. (2007). Leaching of estrogenic hormones from manure-treated structured soils. Environmental Science & Technology, 41, 3911–3917.CrossRefGoogle Scholar
  23. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: a national reconnaissance. Environmental Science & Technology, 36, 1202–1211.CrossRefGoogle Scholar
  24. Lægdsmand, M., Andersen, H., Jacobsen, O. H., & Halling-Sørensen, B. (2009). Transport and fate of estrogenic hormones in slurry-treated soil monoliths. Journal of Environmental Quality, 38, 955–964.CrossRefGoogle Scholar
  25. Lange, I. G., Daxenberger, A., Schiffer, B., Witters, H., Ibarreta, D., & Meyer, H. H. D. (2002). Sex hormones originating from different livestock production systems: fate and potential disrupting activity in the environment. Analytica Chimica Acta, 473, 27–37.CrossRefGoogle Scholar
  26. Ma, L., & Yates, S. R. (2017). Degradation and metabolite formation of estrogen conjugates in an agricultural soil. J Pharmaceut Biomed, 145, 634–640.CrossRefGoogle Scholar
  27. Petersen, S. O., Sommer, S. G., Aaes, O., & Soegaard, K. (1998). Ammonia losses from urine and dung of grazing cattle: effect of N intake. Atmos Environ, 32, 295–300.CrossRefGoogle Scholar
  28. Qin, F., Zhao, Y. Y., Sawyer, M. B., & Li, X. F. (2008). Hydrophilic interaction liquid chromatography-tandem mass spectrometry determination of estrogen conjugates in human urine. Analytical Chemistry, 80, 3404–3411.CrossRefGoogle Scholar
  29. Routledge, E. J., Sheahan, D., Desbrow, C., Brighty, G. C., Waldock, M., & Sumpter, J. P. (1998). Identification of estrogenic chemicals in STW effluent. 2. In vivo responses in trout and roach. Environmental Science & Technology, 32, 1559–1565.CrossRefGoogle Scholar
  30. Scherr, F. F., Sarmah, A. K., Di, H. J., & Cameron, K. C. (2009a). Degradation and metabolite formation of 17b-estradiol-3-sulphate in New Zealand pasture soils. Environment International, 35, 291–297.CrossRefGoogle Scholar
  31. Scherr, F. F., Sarmah, A. K., Di, H. J., & Cameron, K. C. (2009b). Sorption of estrone and estrone-3-sulfate from CaCl2 solution and artificial urine in pastoral soils of New Zealand. Environmental Toxicology and Chemistry, 28, 2564–2571.CrossRefGoogle Scholar
  32. Schuh, M. C., Casey, F. X. M., Hakk, H., DeSutter, T. M., Richards, K. G., Khan, E., & Oduor, P. G. (2011). Effects of field-manure applications on stratified 17b-estradiol concentrations. Journal of Hazardous Materials, 192, 748–752.CrossRefGoogle Scholar
  33. Schulte, R.P.O., Diamond, J., Finkele, K., Holden, N.M. and Brereton, A.J. (2005). Predicting the soil moisture conditions of Irish grasslands. Irish Journal of Agricultural and Food Research 44: 95–110.Google Scholar
  34. Selbie, D. R., Cameron, K. C., Di, H. J., Moir, J. L., Lanigan, G. J., & Richards, K. G. (2014). The effect of urinary nitrogen loading rate and a nitrification inhibitor on nitrous oxide emissions from a temperate grassland soil. J Agr Sci-Cambridge, 152, S159–S171.CrossRefGoogle Scholar
  35. Shappell, N. W. (2006). Estrogenic activity in the environment: municipal wastewater effluent, river, ponds, and wetlands. Journal of Environmental Quality, 35, 122–132.CrossRefGoogle Scholar
  36. Sheng, G. D., Xu, C., Xu, L., Qiu, Y. P., & Zhou, H. Y. (2009). Abiotic oxidation of 17 beta-estradiol by soil manganese oxides. Environmental Pollution, 157, 2710–2715.CrossRefGoogle Scholar
  37. Shi, J., Fujisawa, S., Nakai, S., & Hosomi, M. (2004). Biodegradation of natural and synthetic estrogens by nitrifying activated sludge and ammonia-oxidizing bacterium Nitrosomonas europaea. Water Research, 38, 2323–2330.CrossRefGoogle Scholar
  38. Shrestha, S. L., Casey, F. X. M., Hakk, H., Smith, D. J., & Padmanabhan, G. (2012). Fate and transformation of an estrogen conjugate and its metabolites in agricultural soils. Environmental Science & Technology, 46, 11047–11053.CrossRefGoogle Scholar
  39. Swartz, C. H., Reddy, S., Benotti, M. J., Yin, H. F., Barber, L. B., Brownawell, B. J., & Rudel, R. A. (2006). Steroid estrogens, nonylphenol ethoxylate metabolites, and other wastewater contaminants in groundwater affected by a residential septic system on Cape Cod, MA. Environmental Science & Technology, 40, 4894–4902.CrossRefGoogle Scholar
  40. Thompson, M. L., Casey, F. X. M., Khan, E., Hakk, H., Larsen, G. L., & DeSutter, T. (2009). Occurrence and pathways of manure-borne 17ß-estradiol in vadose zone water. Chemosphere, 76, 472–479.CrossRefGoogle Scholar
  41. van Genuchten, M. T., & Wagenet, R. J. (1989). Two-site/two-region models for pesticide transport and degradation: theoretical development and analytical solution. Soil Science Society of America Journal, 53, 7.Google Scholar
  42. Xuan, R. C., Blassengale, A. A., & Wang, Q. Q. (2008). Degradation of estrogenic hormones in a silt loam soil. J Agr Food Chem, 56, 9152–9158.CrossRefGoogle Scholar
  43. Yi, T. W., Harper, W. F., Holbrook, R. D., & Love, N. G. (2006). Role of particle size and ammonium oxidation in removal of 17a-ethinyl estradiol in bioreactors. J Environ Eng-Asce, 132, 1527–1529.CrossRefGoogle Scholar
  44. Yu, C. P., Roh, H., & Chu, K. H. (2007). 17 beta-estradiol-degrading bacteria isolated from activated sludge. Environmental Science & Technology, 41, 486–492.CrossRefGoogle Scholar
  45. Zhang, F., Bartels, M. J., Geter, D. R., Carr, M. S., McClymount, L. E., Marino, T. A., & Klecka, G. M. (2009). Simultaneous quantitation of testosterone, estradiol, ethinyl estradiol, and 11-ketotestosterone in fathead minnow fish plasma by liquid chromatography/positive atmospheric pressure photoionization tandem mass spectrometry. Rapid Commun Mass Sp, 23, 3637–3646.CrossRefGoogle Scholar
  46. Zhang, H., Shi, J., Liu, X., Zhan, X., & Chen, Q. (2014). Occurrence and removal of free estrogens, conjugated estrogens, and bisphenol A in manure treatment facilities in East China. Water Research, 58, 248–257.CrossRefGoogle Scholar
  47. Zhao, S., Zhang, P. F., Melcer, M. E., & Molina, J. F. (2010). Estrogens in streams associated with a concentrated animal feeding operation in upstate New York, USA. Chemosphere, 79, 420–425.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Soil Science, School of Natural Resource SciencesNorth Dakota State UniversityFargoUSA
  2. 2.AgResearch, Ruakura Research CentreHamiltonNew Zealand
  3. 3.Teagasc, Environmental Research CentreJohnstown CastleWexfordIreland
  4. 4.Animal Metabolism—Agricultural Chemicals Research, Biosciences Research LaboratoryUSDA–ARSFargoUSA

Personalised recommendations