Advertisement

Water, Air, & Soil Pollution

, 230:38 | Cite as

Isolation of Bacterial Consortia that Induced Corrosion of Zirconium Alloys

  • Mihaela Marilena StancuEmail author
Article
  • 74 Downloads

Abstract

The aim of the present study was to isolate several bacterial consortia from a soil sample and to establish if they could colonize zirconium-tin alloy, such as Zircaloy-4. Two bacterial consortia containing aerobic heterotrophic bacteria and anaerobic sulfate-reducing bacteria were isolated from a soil sample. The aerobic heterotrophic bacteria exhibited a higher capability to utilize different sole carbon sources, as compared with anaerobic sulfate-reducing bacteria. Based on a morphological, biochemical, and molecular analysis, bacterial isolates were identified as Pseudomonas putida IBBHA1, Pseudomonas aeruginosa IBBHA2, Achromobacter spanius IBBHA3, Citrobacter freundii IBBSR1, Citrobacter youngae IBBSR2, and Citrobacter braakii IBBSR3. Isolated bacterial consortia which possess distinct DNA fingerprints were able to form biofilms and colonize the surface of zirconium-tin alloy coupons, although the colonization of coupons by the aerobic heterotrophic bacteria or anaerobic sulfate-reducing bacteria alone was lower compared with that observed when the coupon was immersed in a mixture of both bacterial consortia. Coupons immersed in these bacterial consortia revealed changes in the surface characteristics, which can facilitate or accelerate zirconium-tin alloy corrosion. The accumulation of corrosion products on coupons surface was less significant when the coupons were immersed solely in aerobic heterotrophic bacteria or anaerobic sulfate-reducing bacteria, compared with that observed when the coupon was immersed in a mixture of both bacterial consortia.

Keywords

Isolation Bacterial consortia Zirconium-tin alloy Colonization 

Notes

Acknowledgments

The author thanks Ing. Mariana Tunaru from the RATEN-Institute for Nuclear Research Pitesti for proving the Zircaloy-4 coupons. The author is grateful to Ana Dinu and Alexandru Brînzan for technical support.

The study was funded by projects no. 5736/2012 from the RATEN-Institute for Nuclear Research Pitesti and no. RO1567-IBB05/2018 from the Institute of Biology Bucharest of Romanian Academy.

References

  1. Abdolahi, A., Hamzah, E., Ibrahim, Z., & Hashim, S. (2014). Microbially influenced corrosion of steels by Pseudomonas aeruginosa. Corrosion Reviews, 32, 129–141.Google Scholar
  2. Allen, T. R., Konings, R. J. M., & Motta, A. T. (2012). Corrosion of zirconium alloys. In R. J. M. Konings (Ed.), Comprehensive Nuclear Materials (Vol. 5, pp. 49–68). Amsterdam: Elsevier.CrossRefGoogle Scholar
  3. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.CrossRefGoogle Scholar
  4. Bates, S. T., Berg-Lyons, D., Caporaso, J. G., Walters, W. A., Knight, R., & Fierer, N. (2011). Examining the global distribution of dominant archaeal populations in soil. ISME Journal, 5, 908–917.CrossRefGoogle Scholar
  5. Beech, I. B. (2003). Sulfate-reducing bacteria in biofilms on metallic materials and corrosion. Microbiology Today, 30, 115–117.Google Scholar
  6. Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.CrossRefGoogle Scholar
  7. Holt, J. G., Krieg, N. R., Sneath, P. H. A., Staley, J. T., & Williams, S. T. (1994). Bergey’s Manual of Determinative Bacteriology (9th ed.). Baltimore: Williams and Wilkins.Google Scholar
  8. Kalaiarasan, E., & Narasimha, H. B. (2016). Antimicrobial resistance patterns and prevalence of virulence factors among biofilm producing strains of Pseudomonas aeruginosa. European Journal of Biotechnology and Bioscience, 4, 26–28.Google Scholar
  9. Larsen, J., Rasmussen, K., Pedersen, H., Sorensen, K., Lundgaard, T., & Skovhus, T. L. (2010). Consortia of MIC bacteria and archaea causing pitting corrosion in top side oil production facilities. In NACE - International Corrosion Conference Series, Houston, TX, 1–12.Google Scholar
  10. Marchesi, J. R., Sato, T., Weightman, A. J., Martin, T. A., Fry, J. C., Hiom, S. J., & Wade, W. G. (1998). Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Applied and Environmental Microbiology, 64, 795–799.Google Scholar
  11. McBeth, J. M., Little, B. J., Ray, R. I., Farrar, K. M., & Emerson, D. (2011). Neutrophilic iron-oxidizing “Zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Applied and Environmental Microbiology, 77, 1405–1412.CrossRefGoogle Scholar
  12. Michaud, L., Di Cello, F., Brilli, M., Fani, R., Lo Giudice, A., & Bruni, V. (2004). Biodiversity of cultivable Antarctic psychrotrophic marine bacteria isolated from Terra Nova Bay (Ross Sea). FEMS Microbiology Letters, 230, 63–71.CrossRefGoogle Scholar
  13. Motta, A. T. (2011). Waterside corrosion in zirconium alloys. Journal of Metals, 63, 59–63.Google Scholar
  14. Orphan, V. J., Hinrichs, K.-U., Ussler, W., III, Paull, C. K., Taylor, L. T., Sylva, S. P., Hayes, J. M., & Delong, E. F. (2001). Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Applied and Environmental Microbiology, 67, 1922–1934.CrossRefGoogle Scholar
  15. Pini, F., Grossi, C., Nereo, S., Michaud, L., Lo Giudice, A., Bruni, V., Baldi, F., & Fani, R. (2007). Molecular and physiological characterisation of psychrotrophic hydrocarbon-degrading bacteria isolated from Terra Nova Bay (Antarctica). European Journal of Soil Biology, 43, 368–379.CrossRefGoogle Scholar
  16. Postgate, J. R. (1984). The sulphate-reducing bacteria (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  17. Preston-Mafham, J., Boddy, L., & Randerson, P. F. (2002). Analysis of microbial community functional diversity using sole-carbon-source utilization profiles - a critique. FEMS Microbiology Ecology, 42, 1–14.Google Scholar
  18. Sambrook, J., & Russel, D. (2001). Molecular cloning: a laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  19. Stancu, M. M. (2016). Response mechanisms in Serratia marcescens IBBPo15 during organic solvents exposure. Current Microbiology, 73, 755–765.CrossRefGoogle Scholar
  20. Stancu, M. M., & Grifoll, M. (2011). Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. Journal of General and Applied Microbiology, 57, 1–18.CrossRefGoogle Scholar
  21. Versalovic, J., Schneider, M., de Brujin, F. J., & Lupski, J. R. (1994). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods in Molecular and Cellular Biology, 5, 25–40.Google Scholar
  22. Videla, H. A., & Herrera, L. K. (2005). Microbiologically influenced corrosion: looking to the future. International Microbiology, 8, 169–180.Google Scholar
  23. Vigneron, A., Alsop, E. B., Chambers, B., Lomans, B. P., Head, I. M., & Tsesmetzis, N. (2016). Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Applied and Environmental Microbiology, 82, 2545–2554.CrossRefGoogle Scholar
  24. Zarasvand, K. A., & Rai, V. R. (2014). Microorganisms: induction and inhibition of corrosion in metals. International Biodeterioration & Biodegradation, 87, 66–74.CrossRefGoogle Scholar
  25. Zuo, R. (2007). Biofilms: strategies for metal corrosion inhibition employing microorganisms. Applied Microbiology and Biotechnology, 76, 1245–1253.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Biology Bucharest of Romanian AcademyBucharestRomania

Personalised recommendations