Advertisement

Effects of Liming and Urochloa brizantha Management on Leaching Potential of Picloram

  • Ana Beatriz R. J. Passos
  • Matheus F. SouzaEmail author
  • Douglas T. Saraiva
  • Antônio Alberto da Silva
  • Maria Eliana L. R. Queiroz
  • Felipe P. Carvalho
  • Daniel Valadão Silva
Article

Abstract

In pastures, the application of limestone is often performed after removal of the animals for proper development and establishment of regrowth. Together with this practice, the use of picloram in high concentrations for dicotyledonous weeds is common. Therefore, the evaluation of the behavior of this herbicide in these conditions is critical. The objective of this study was to determine the leaching of the picloram, in the soil with different pH and cultivated with Urochloa brizantha (signalgrass) trimmed or not. The experiment was plotted in a subdivided plot with four repetitions, where the plots were constituted by factors pH (5.3 and 6.4) and Urochloa brizantha managements (trimmed and no trimmed). The subplots were composed by depths (0 to 50 cm). The picloram was applied to the top of the columns after 65 days after emergency. A rain of intensity of 60 mm was simulated 12 h after the herbicide application. Picloram concentration was quantified by the high-performance liquid chromatography. Besides that, a control treatment was added without the presence of the signalgrass, for each substrate. The picloram was not detected in the percolated water through the columns. Picloram leached to deeper layers in the soil with pH 6.4, independently of the signalgrass management. The signalgrass reduced the leaching of the picloram, and those no-trimmed demonstrate a higher capacity to retain the herbicide in superficial layers. The liming of the soil increases the pH and reduces the amount of organic matter in the soil, which favors the leaching of picloram to the layer of 30–35 cm. Trimming of Urochloa brizantha reduces the capacity of this forage to reduce the leaching of picloram.

Keywords

Herbicide mobility Pastures Signalgrass Auxin mimetizers 

Notes

Funding Information

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

References

  1. Assis, E., Silva, A., D'Antonino, L., Queiroz, M., & Barbosa, L. (2011). Leaching of picloram in ultisol under different rainfall volumes. Planta Daninha, 29, 1129–1136.CrossRefGoogle Scholar
  2. Braga, R. R., dos Santos, J. B., Zanuncio, J. C., Bibiano, C. S., Ferreira, E. A., Oliveira, M. C., & Serrão, J. E. (2016). Effect of growing Brachiria brizantha on phytoremediation of picloram under different pH environments. Ecological Engineering, 94, 102–106.CrossRefGoogle Scholar
  3. Carmo, M., Procopio, S., Pires, F., Cargnelutti Filho, A., Barroso, A., Silva, G., Carmo, E., Braz, G., Silva, W., & Braz, A. (2008). Plant selection for phytoremediation of soils contaminated with picloram. Planta Daninha, 26, 301–313.CrossRefGoogle Scholar
  4. Castro Neto, M., Souza, M. F., Silva, D. V., Faria, A. T., da Silva, A. A., Pereira, G., & Freitas, M. A. M. (2017). Leaching of imidazolinones in soils under a clearfield system. Archives of Agronomy and Soil Science, 63, 897–906.CrossRefGoogle Scholar
  5. Celis, R., Real, M., Hermosín, M., & Cornejo, J. (2005). Sorption and leaching behaviour of polar aromatic acids in agricultural soils by batch and column leaching tests. European Journal of Soil Science, 56, 287–297.CrossRefGoogle Scholar
  6. Clivot, H., Mary, B., Valé, M., Cohan, J. P., Champolivier, L., Piraux, F., & Justes, E. (2017). Quantifying in situ and modeling net nitrogen mineralization from soil organic matter in arable cropping systems. Soil Biology and Biochemistry, 111, 44–59.CrossRefGoogle Scholar
  7. dos Santos, L. B., Infante, C., & Masini, J. C. (2010). Determination of picloram in waters by sequential injection chromatography with UV detection. J Brazil Chem Soc, 21, 1557–1562.CrossRefGoogle Scholar
  8. Faria, A. T., Souza, M. F., de Jesus Passos, A. B. R., da Silva, A. A., Silva, D. V., Zanuncio, J. C., & Rocha, P. R. R. (2018). Tebuthiuron leaching in three Brazilian soils as affected by soil pH. Env Earth Sci, 77, 214–219.CrossRefGoogle Scholar
  9. Feng, N. X., Yu, J., Zhao, H. M., Cheng, Y. T., Mo, C. H., Cai, Q. Y., & Wong, M. H. (2017). Efficient phytoremediation of organic contaminants in soils using plant–endophyte partnerships. Sci Total Environ, 583, 352–368.CrossRefGoogle Scholar
  10. Flores, P. G., López, I. F., Kemp, P. D., Dörner, J., & Zhang, B. (2017). Prediction by decision tree modelling of the relative magnitude of functional group abundance in a pasture ecosystem in the south of Chile. Agriculture, Ecosystems & Environment, 239, 38–50.CrossRefGoogle Scholar
  11. Grichar, W. J., & Dotray, P. A. (2007). Weed control and sesame (Sesamum indicum L.) response to preplant incorporated herbicides and method of incorporation. Crop Protection, 26, 1826–1830.CrossRefGoogle Scholar
  12. Grover, S. P., Butterly, C. R., Wang, X., & Tang, C. (2017). The short-term effects of liming on organic carbon mineralization in two acidic soils as affected by different rates and application depths of lime. Biol Fert Soils, 53, 431–443.CrossRefGoogle Scholar
  13. Guerra, N., Oliveira Júnior, R. S., Constantin, J., Oliveira Neto, A. M., Dan, H. A., & Braz, G. B. P. (2013). The leaching of trifloxysulfuron-sodium and pyrithiobac-sodium in soil columns as a function of soil liming. Acta Scientiarum Agronomy, 35, 175–181.CrossRefGoogle Scholar
  14. Huang, C. W., Domec, J. C., Ward, E. J., Duman, T., Manoli, G., Parolari, A. J., & Katul, G. G. (2017). The effect of plant water storage on water fluxes within the coupled soil–plant system. New Phytologist, 213, 1093–1106.CrossRefGoogle Scholar
  15. Khrunyk, Y., Schiewer, S., Carstens, K. L., Hu, D., & Coats, J. R. (2017). Uptake of C14-atrazine by prairie grasses in a phytoremediation setting. Int J Phytoremediat, 19, 104–112.CrossRefGoogle Scholar
  16. MacAdam, J. W., & Nelson, C. J. (2017). Physiology of forage plants. Forages, Volume 1: An Introduction to Grassland Agriculture, 1, 51.Google Scholar
  17. Maciel, G. M., Inácio, F. D., de Sá-Nakanishi, A. B., Haminiuk, C. W. I., Castoldi, R., Comar, J. F., Bracht, A., & Peralta, R. M. (2013). Response of Ganoderma lucidum and Trametes sp. to the herbicide picloram: Tolerance, antioxidants and production of ligninolytic enzymes. Pestic Biochem Phys, 105, 84–92.CrossRefGoogle Scholar
  18. Marco-Brown, J. L., Areco, M. M., Sánchez, R. M. T., & dos Santos, A. M. (2014). Adsorption of picloram herbicide on montmorillonite: kinetic and equilibrium studies. Colloid Surface A, 449, 121–128.CrossRefGoogle Scholar
  19. Müller, K., Magesan, G., & Bolan, N. (2007). A critical review of the influence of effluent irrigation on the fate of pesticides in soil. Agriculture, Ecosystems & Environment, 120, 93–116.CrossRefGoogle Scholar
  20. Nascimento, A. F., Pires, F. R., Chagas, K., Procópio, S. O., Oliveira, M. A., Cargnelutti Filho, A., Belo, A. F., & Egreja Filho, F. B. (2015). Risk of soil recontamination due to using Eleusine coracana and Panicum maximum straw after phytoremediation of picloram. Int J Phytoremediat., 17, 313–321.CrossRefGoogle Scholar
  21. Oukali-Haouchine, O., Barriuso, E., Mayata, Y., & Moussaoui, K. M. (2013). Factors affecting metribuzin retention in Algerian soils and assessment of the risks of contamination. Environmental Monitoring and Assessment, 185, 4107–4115.CrossRefGoogle Scholar
  22. Padovan, M. P., Brook, R. M., Barrios, M., Cruz-Castillo, J. B., Vilchez-Mendoza, S. J., Costa, A. N., & Rapidel, B. (2018). Water loss by transpiration and soil evaporation in coffee shaded by Tabebuia rosea Bertol. and Simarouba glauca dc. compared to unshaded coffee in sub-optimal environmental conditions. Agricultural and Forest Meteorology, 248, 1–14.CrossRefGoogle Scholar
  23. Passos, A. B. R., Freitas, M. A. M., Torres, L. G., Silva, A. A., Queiroz, M. E. L., & Lima, C. F. (2013). Sorption and desorption of sulfentrazone in Brazilian soils. Journal of Environmental Science and Health. Part. B, 48, 646–650.CrossRefGoogle Scholar
  24. Passos, A. B. R., Souza, M. F., Silva, D. V., Saraiva, D. T., da Silva, A. A., Zanuncio, J. C., & Gonçalves, B. F. S. (2018). Persistence of picloram in soil with different vegetation managements. Environ Sci Pollut, 1–6.Google Scholar
  25. Qu, M., Li, H., Li, N., Liu, G., Zhao, J., Hua, Y., & Zhu, D. (2017). Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments. Chemosphere, 168, 1515–1522.CrossRefGoogle Scholar
  26. Ribani, M., Bottoli, C. B. G., Collins, C. H., Jardim, I. C. S. F., & Melo, L. F. C. (2004). Validation for chromatographic and electrophoretic methods. Química Nova, 27, 771–780.CrossRefGoogle Scholar
  27. Wongkaew, A., Saito, H., Fujimaki, H., & Šimůnek, J. (2018). Numerical analysis of soil water dynamics in a soil column with an artificial capillary barrier growing leaf vegetables. Soil Use Manage.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ana Beatriz R. J. Passos
    • 1
  • Matheus F. Souza
    • 2
    Email author return OK on get
  • Douglas T. Saraiva
    • 3
  • Antônio Alberto da Silva
    • 3
  • Maria Eliana L. R. Queiroz
    • 4
  • Felipe P. Carvalho
    • 5
  • Daniel Valadão Silva
    • 2
  1. 1.Department of Crop ProductionFederal University of Espírito SantoAlegreBrazil
  2. 2.Department of Crop ProductionFederal University of Semi-AridMossoróBrazil
  3. 3.Department of Crop ProductionFederal University of ViçosaViçosaBrazil
  4. 4.Department of ChemicalFederal University of ViçosaViçosaBrazil
  5. 5.Institute of Agronomy ScienceFederal University of ViçosaFlorestalBrazil

Personalised recommendations