Advertisement

A Site-Specific Analysis of the Implications of a Changing Ozone Profile and Climate for Stomatal Ozone Fluxes in Europe

  • Felicity HayesEmail author
  • Gina Mills
  • Rocio Alonso
  • Ignacio González-Fernández
  • Mhairi Coyle
  • Ludger Grünhage
  • Giacomo Gerosa
  • Per Erik Karlsson
  • Riccardo Marzuoli
Article

Abstract

In this study, we used eight sites from across Europe to investigate the implications of a future climate (2 °C warmer and 20% drier) and a changing ozone profile (increased background concentrations and reduced peaks) on stomatal ozone fluxes of three widely occurring plant species. A changing ozone profile with small increases in background ozone concentrations over the course of a growing season could have significant impacts on the annual accumulated stomatal ozone uptake, even if peak concentrations of ozone are reduced. Predicted increases in stomatal ozone uptake showed a strong relationship with latitude and were larger at sites from northern and mid-Europe than those from southern Europe. At the sites from central and northern regions of Europe, including the UK and Sweden, climatic conditions were highly conducive to stomatal ozone uptake by vegetation during the summer months and therefore an increase in daily mean ozone concentration of 3–16% during this time of year (from increased background concentrations, reduced peaks) would have a large impact on stomatal ozone uptake. In contrast, during spring and autumn, the climatic conditions can limit ozone uptake for many species. Although small increases in ozone concentration during these seasons could cause a modest increase in ozone uptake, for those species that are active at low temperatures, a 2 °C increase in temperature would increase stomatal ozone uptake even in the absence of further increases in ozone concentration. Predicted changes in climate could alter ozone uptake even with no change in ozone profile. For some southern regions of Europe, where temperatures are close to or above optimum for stomatal opening, an increase in temperature of 2 °C could limit stomatal ozone uptake by enhancing stomatal closure during the summer months, whereas during the spring, when many plants are actively growing, a small increase in temperature would increase stomatal ozone uptake.

Keywords

Stomata Climate change Ozone flux Betula pendula Dactylis glomerata Leontodon hispidus 

Notes

Acknowledgements

FH and GM would like to thank the Natural Environment Research Council (NERC) for supporting this project (NEC05574). The contribution by PEK was made possible by the research programme SCAC, funded by the Swedish Environmental Protection Agency. The contribution of IGF and RA was funded by the Spanish projects AGRISOST-CM (S2013/ABI-2717, Comunidad de Madrid).

Supplementary material

11270_2018_4057_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1775 kb)

References

  1. Akritidis, D., Zanis, P., Pytharoulis, I., & Karacostas, T. (2014). Near-surface ozone trends over Europe in RegCM3/CAMx simulations for the time period 1996-2006. Atmospheric Environment, 97, 6–18.CrossRefGoogle Scholar
  2. Alonso, R., Elvira, S., Castillo, F. J., & Gimeno, B. S. (2001). Interactive effects of ozone and drought stress on pigments and activities of antioxidative enzymes in Pinus halepensis. Plant Cell and Environment, 24, 905–916.CrossRefGoogle Scholar
  3. Bagard, M., Le Thiec, D., Delacote, E., Hasenfratz-Sauder, M. P., Banvoy, J., Gerard, J., Dizengremel, P., & Jolivet, Y. (2008). Ozone-induced changes in photosynthesis and photorespiration of hybrid poplar in relation to the developmental stage of the leaves. Physiologica Plantarum, 134, 559–574.CrossRefGoogle Scholar
  4. Bender, J., Bergmann, E., Weigel, H.-J., Grünhage, L., Schröder, M., Builtjes, P., Schaap, M., Kranenburg, R., Wichink Kruit, R., Stern, R., Baumgarten, M. & Matyssek, R. (2015). Anwendung und Überprüfung neuer Methoden zur flächenhaften Bewertung der Auswirkung von bodennahem Ozon auf die Biodiversität terrestrischer Ökosysteme - Teil I. UBA-Texte 70/2015.Google Scholar
  5. Bender, J., Muntifering, R. B., Lin, J. C., & Weigel, H. J. (2006). Growth and nutritive quality of Poa pratensis as influenced by ozone and competition. Environmental Pollution, 142, 109–115.CrossRefGoogle Scholar
  6. Braun, S., Schindler, C., & Rihm, B. (2014). Growth losses in Swiss forests caused by ozone: epidemiological data analysis of stem increment of Fagus sylvatica L. and Picea abies Karst. Environmental Pollution, 192, 129–138.CrossRefGoogle Scholar
  7. Büker, P., Feng, Z., Uddling, J., et al. (2015). New flux based dose-response relationships for ozone for European forest tree species. Environmental Pollution, 206, 163–174.CrossRefGoogle Scholar
  8. Büker, P., Morrissey, T., Briolat, A., Falk, R., Simpson, D., Tuovinen, J. P., Alonso, R., Barth, S., Baumgarten, M., Grulke, N., Karlsson, P. E., King, J., Lagergren, F., Matyssek, R., Nunn, A., Ogaya, R., Penuelas, J., Rhea, L., Schaub, M., Uddling, J., Werner, W., & Emberson, L. D. (2012). DO3SE modelling of soil moisture to determine ozone flux to forest trees. Atmospheric Chemistry and Physics, 12, 5537–5562.CrossRefGoogle Scholar
  9. Burkey, K. O., Neufeld, H. S., Souza, L., Chappelka, A. H., & Davison, A. W. (2006). Seasonal profiles of leaf ascorbic acid content and redox state in ozone-sensitive wildflowers. Environmental Pollution, 143, 427–434.CrossRefGoogle Scholar
  10. Calvete-Sogo, H., Elvira, S., Sanz, J., et al. (2015). Current ozone levels threaten gross primary production and yield of Mediterranean annual pastures and nitrogen modulates the response. Atmospheric Environment, 95, 197–206.CrossRefGoogle Scholar
  11. Calvo, E., Martin, C., & Sanz, M. J. (2007). Ozone sensitivity differences in five tomato cultivars: visible injury and fruits. Water Air and Soil Pollution, 186, 167–181.CrossRefGoogle Scholar
  12. Clifton, O. E., Fiore, A. M., Correa, G., Horowitz, L. W., & Naik, V. (2014). Twenty-first century reversal of the surface ozone seasonal cycle over the northeastern United States. Geophysical Research Letters, 2014, 7343–7350.Google Scholar
  13. Coleman, L., Martin, S., Varghese, S. G., Jennings, C. D., et al. (2013). Assessment of changing meteorology and emissions on air quality using a regional climate model: impact on ozone. Atmospheric Environment, 69, 198–210.CrossRefGoogle Scholar
  14. Coyle, M., Fowler, D., & Ashmore, M. (2003). New directions: implications of increasing tropospheric background ozone concentrations for vegetation. Atmospheric Environment, 37, 153–154.CrossRefGoogle Scholar
  15. Diem, J. E. (2004). Explanations for the spring peak in ground-level ozone in the southwestern United States. Physical Geography, 25, 105–129.CrossRefGoogle Scholar
  16. EEA (2011). Air pollution by ozone across Europe during summer 2010. EEA technical report number 6/2011. EEA, Copenhagen, Denmark. doi: https://doi.org/10.2800/77390.
  17. Emberson, L. D., Kitwiroon, N., Beevers, S., Büker, P., & Cinderby, S. (2013). Scorched Earth: how will changes in the strength of the vegetation sink to ozone deposition affect human health and ecosystems? Atmospheric Chemistry and Physics, 13, 6741–6755.CrossRefGoogle Scholar
  18. Emberson, L. D., Ashmore, M. R., Cambridge, H. M., Simpson, D., & Tuovinen, J.-P. (2000a). Modelling stomatal ozone flux across Europe. Environmental Pollution, 109, 403–413.CrossRefGoogle Scholar
  19. Emberson, L. D., Wieser, G., & Ashmore, M. R. (2000b). Modelling of stomatal conductance and ozone flux of Norway spruce: comparison with field data. Environmental Pollution, 109, 393–402.CrossRefGoogle Scholar
  20. Fiore, A. M., Naik, V., Spracklen, D. V., Steiner, A., Unger, N., Prather, M., Bergmann, D., Cameron-Smith, P. J., Cionni, I., & Collins, W. J. (2012). Global air quality and climate. Chemical Society Reviews, 41, 6663–6683.CrossRefGoogle Scholar
  21. García-Gómez, H., Aguillaume, L., Izquieta-Rojano, S., Valino, F., Avila, A., Elustondo, D., Santamaria, J. M., Alastuey, A., Calvete-Sogo, H., González-Fernández, I., & Alonso, R. (2016). Atmospheric pollutants in peri-urban forests of Quercus ilex: evidence of pollution abatement and threats for vegetation. Environmental Science and Pollution Research, 23, 6400–6413.CrossRefGoogle Scholar
  22. González-Fernández, I., Bermejo, V., Elvira, S., Sanz, J., & Gimeno, B. S. (2010). Modelling annual pasture dynamics: application to stomatal ozone deposition. Atmospheric Environment, 44(21–22).Google Scholar
  23. Harmens, H., Hayes, F., Mills, G., Sharps, K., Osborne, S., & Pleijel, H. (2018). Wheat yield responses to stomatal uptake of ozone: peak vs rising background ozone conditions. Atmospheric Environment, 173(1–5).Google Scholar
  24. Hayes, F., Jones, M. L. M., Mills, G., & Ashmore, M. (2007). Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone. Environmental Pollution, 146, 754–762.CrossRefGoogle Scholar
  25. Hayes, F., Mills, G., Jones, M. L. M., & Ashmore, M. (2010). Does a simulated upland community respond to increasing background, peak or accumulated exposure of ozone? Atmospheric Environment, 44(34), 4155–4164.CrossRefGoogle Scholar
  26. Hogda, K. A., Tommervik, H., & Karlsen, S. R. (2013). Trends in the start of the growing season in Fennoscandia 1982-2011. Remote Sensing, 5, 4304–4318.CrossRefGoogle Scholar
  27. IPCC (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team R.K. Pachauri and L.A. Meyer (Eds.)]. IPCC, Geneva. 151pp.Google Scholar
  28. Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43, 51–63.CrossRefGoogle Scholar
  29. Jarvis, P. G. (1976). Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Philosophical transactions of the Royal Society of London Series B-Biological Sciences, 273(927), 593–610.CrossRefGoogle Scholar
  30. Karlsson, P. E., Klingberg, J., Engardt, M., Andersson, C., Langner, J., Pihl-Karlsson, G., & Pleijel, H. (2017). Past, present and future concentrations of ground-level ozone and potential impacts on ecosystems and human health in northern Europe. Science of the Total Environment, 576, 22–35.CrossRefGoogle Scholar
  31. Karlsson, P. E., Tang, L., Sundberg, J., Chen, D., Lindskog, A., & Pleijel, H. (2007). Increasing risk for negative ozone impacts on vegetation in northern Sweden. Environmental Pollution, 150, 96–106.CrossRefGoogle Scholar
  32. Karlsson, P. E., Pleijel, H., & Simpson, D. (2009). Ozone exposure and impacts on vegetation in the Nordic and Baltic countries. Ambio: A Journal of the Human Environment, 38, 402–405.CrossRefGoogle Scholar
  33. Kivimaenpaa, M., Riikonen, J., Sutinen, S., & Holopainen, T. (2014). Cell structural changes in the mesophyll of Norway spruce needles by elevated ozone and elevated temperature in open-field exposure during cold acclimation. Tree Physiology, 34, 389–403.CrossRefGoogle Scholar
  34. Klingberg, J., Engardt, M., Uddling, J., Karlsson, P. E., & Pleijel, H. (2011). Ozone risk for vegetation in the future climate of Europe based on stomatal ozone uptake calculations. Tellus A, 63, 174–187.CrossRefGoogle Scholar
  35. Klingberg, J., Bjorkman, M. P., Pihl-Karlsson, G., & Pleijel, H. (2009). Observations of ground-level ozone and NO2 in northernmost Sweden, including the Scandian Mountain Range. Ambio, 38, 448–451.CrossRefGoogle Scholar
  36. Kroeger, T., Escobedo, F. J., Hernandez, J. L., Varela, S., Delphin, S., Fisher, J. R. B., & Waldron, J. (2014). Reforestation as a novel abatement and compliance measure for ground-level ozone. Proceedings of the National Academy of Sciences of the United States of America, 111, E4204–E4213.CrossRefGoogle Scholar
  37. Lacressonniere, G., Peuch, V. H., Vautard, R., Arteta, J., Deque, M., Joly, M., Josse, B., Marecal, V., & Saint-Martin, D. (2014). European air quality in the 2030’s and 2050’s: impacts of global and regional emission trends and of climate change. Atmospheric Environment, 92, 348–358.CrossRefGoogle Scholar
  38. Lee, Y., Wenig, M., & Yang, X. (2009). The emergence of urban ozone episodes in autumn and air temperature rise in Hong Kong. Air Quality, Atmosphere and Health, 2, 111–121.CrossRefGoogle Scholar
  39. Lefohn, A. S., Malley, C. S., Simon, H., Wells, B., Xu, X. B., Zhang, L., & Wang, T. (2017). Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States and China. Atmospheric Environment, 152, 123–145.CrossRefGoogle Scholar
  40. Leisner, & Ainsworth, E. A. (2012). Quantifying the effects of ozone on plant reproductive growth and development. Global Change Biology, 18, 606–616.CrossRefGoogle Scholar
  41. LRTAP Convention (2014). Manual on methodologies and criteria for modelling and mapping critical loads and levels and air pollution effects, risks and trends. Chapter 3: Mapping critical levels for vegetation. http://icpvegetation.ceh.ac.uk.
  42. Matyssek, R. & Sandermann, H. (2003). Impact of ozone on trees: an ecophysiological perspective. Progress in botany 64. Springer-Verlag. Heidelberg. pp349–404.Google Scholar
  43. Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., Alm-Kuebler, K., Bissolli, P., Braslavska, O., et al. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969–1976.CrossRefGoogle Scholar
  44. Mills, G., Hayes, F., Simpson, D., Emberson, L., Norris, D., Harmens, H., & Büker, P. (2011a). Evidence of widespread effects of ozone on crops and (semi-)natural vegetation in Europe (1990-2006) in relation to AOT40- and flux-based risk maps. Global Change Biology, 17, 592–613.CrossRefGoogle Scholar
  45. Mills, G., Pleijel, H., Braun, S., Büker, P., Bermejo, V., Calvo, E., Danielsson, H., Emberson, L., González-Fernández, I., Grünhage, L., Harmens, H., Hayes, F., Karlsson, P. E., & Simpson, D. (2011b). New stomatal flux-based critical levels for ozone effects on vegetation. Atmospheric Environment, 45, 5064–5068.CrossRefGoogle Scholar
  46. Monteith, J. L. (1965). Evaporation and environment. Symposia of the Society for Experimental Biology, 19, 205–234.Google Scholar
  47. Musselman, R. C., Lefohn, A. S., Massman, W. J., & Heath, R. L. (2006). A critical review and analysis of the use of exposure- and flux-based ozone indices for predicting vegetation effects. Atmospheric Environment, 40, 1869–1888.CrossRefGoogle Scholar
  48. Oksanen, E., & Holopainen, T. (2001). Response of two birch (Betula pendula Roth) clones to different ozone profiles with similar AOT40 exposure. Atmospheric Environment, 35, 5245–5254.CrossRefGoogle Scholar
  49. Olsson, C. (2014). Tree phenology modelling in the boreal and temperate climate zones: timing of spring and autumn events. PhD Thesis. Department of Physical Geography and Ecosystem Science, Lund University.Google Scholar
  50. Paoletti, E., De Marco, A., Beddows, D., Harrison, R., & Manning, W. (2014). Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environmental Pollution, 192, 295–299.CrossRefGoogle Scholar
  51. Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Gilge, S., Scheel, H. E., Steinbacher, M., & Chan, E. (2012). Long-term changes in lower tropospheric baseline ozone concentrations at northern mid-latitudes. Atmospheric Chemistry and Physics, 12, 11485–11504.CrossRefGoogle Scholar
  52. Parrish, D. D., Law, K. S., Staehelin, J., Derwent, R., Cooper, O. R., Tanimoto, H., Volz-Thomas, A., Glige, S., Scheel, H. E., Steinbacher, M., & Chan, E. (2013). Lower tropospheric ozone at northern midlatitudes: changing seasonal cycle. Geophysical Research Letters, 40, 1631–1636.CrossRefGoogle Scholar
  53. Peñuelas, J., Filella, I., & Comas, P. (2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531–544.CrossRefGoogle Scholar
  54. Pleijel, H., Danielsson, H., Gelang, J., Sild, E., & Sellden, G. (1998). Growth stage dependence of the grain yield response to ozone in spring wheat (Triticum aestivum L.). Agriculture, Ecosystems and Environment, 70, 61–68.CrossRefGoogle Scholar
  55. Pleijel, H., Danielsson, H., Ojanpera, K., De Temmerman, L., Hogy, O., Badiani, M., & Karlsson, P. E. (2004). Relationships between ozone exposure and yield loss in European wheat and potato – a comparison of concentration- and flux-based exposure indices. Atmospheric Environment, 38, 2259–2269.CrossRefGoogle Scholar
  56. Wild, O., Fiore, A. M., Shindell, D. T., Doherty, R. M., Collins, W. J., Dentener, F. J., Schultz, M. G., Gong, S., MacKenzie, I. A., Zeng, G., Hess, P., Duncan, B. N., Bergmann, D. J., Szopa, S., Jonson, J. E., Keating, T. J., & Zuber, A. (2012). Modelling future changes in surface ozone: a parameterized approach. Atmospheric Chemistry and Physics, 12, 2037–2054.CrossRefGoogle Scholar
  57. Wilson, R. C., Fleming, Z. L., Monks, P. S., Clain, G., Henne, S., Konovalov, I. B., Szopa, S., & Menut, L. (2012). Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996-2005. Atmospheric Chemistry and Physics, 12, 437–454.CrossRefGoogle Scholar
  58. Wittig, V. E., Ainsworth, E. A., Naidu, S. L., Karnosky, D. F., & Long, S. P. (2009). Quantifying the impact of current and future tropospheric ozone on tree biomass, growth, physiology and biochemistry: a quantitative meta-analysis. Global Change Biology, 15, 396–424.CrossRefGoogle Scholar
  59. Zhang, J., Schaub, M., Ferdinand, J., Skelly, J., Steiner, K., & Savage, J. (2010). Leaf age affects the responses of foliar injury and gas exchange to tropospheric ozone in Prunus serotina seedlings. Environmental Pollution, 158, 2627–2634.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Felicity Hayes
    • 1
    Email author
  • Gina Mills
    • 1
  • Rocio Alonso
    • 2
  • Ignacio González-Fernández
    • 2
  • Mhairi Coyle
    • 3
  • Ludger Grünhage
    • 4
  • Giacomo Gerosa
    • 5
  • Per Erik Karlsson
    • 6
  • Riccardo Marzuoli
    • 5
  1. 1.Centre for Ecology & HydrologyBangorUK
  2. 2.Ecotoxicology of Air Pollution, CIEMATMadridSpain
  3. 3.Centre for Ecology & Hydrology, Bush EstateMidlothianUK
  4. 4.Department of Plant EcologyJustus-Liebig-University GiessenGiessenGermany
  5. 5.Department of Mathematics and PhysicsCatholic University of BresciaBresciaItaly
  6. 6.IVL Swedish Environmental Research InstituteGothenburgSweden

Personalised recommendations