Advertisement

Water, Air, & Soil Pollution

, 229:398 | Cite as

An Evaluation of Trace Metal Concentration in Terrestrial and Aquatic Environments near Artigas Antarctic Scientific Base (King George Island, Maritime Antarctica)

  • C. Bueno
  • N. Kandratavicius
  • N. Venturini
  • R. C. L. Figueira
  • L. Pérez
  • K. Iglesias
  • E. Brugnoli
Article
  • 132 Downloads

Abstract

An evaluation of the concentration of metals in terrestrial and aquatic environments near Artigas Antarctic Scientific Base was assessed. Granulometric characteristics, total organic matter content, concentration of metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) and metalloid (As) in soil, marine and freshwater sediments were determined. The geoaccumulation index (Igeo) was used in order to analyse the contamination magnitude. Samples were collected in summer 2015–2016 covering 31 sampling stations; 15 terrestrial/soil stations (T0–T14) were placed considering the distribution of Artigas Base buildings and the septic tanks’ location. Eleven freshwater stations were placed along the three meltwater streams near Artigas Base (S0–S10), and two in Uruguay Lake (L1 and L2). Finally, three marine stations in Maxwell Bay were placed one near the Artigas Base (AB) and two far from it in North Cove (NC1, NC2). Some of the terrestrial stations (T2, T10, T11 and T13) presented the highest concentration of metals and Igeo values, which was associated to anthropic activities. Highest metal levels were related to fuel storage and handling, but also, with sewage release and the presence of old leaded paint residues. These polluted sites were limited to a restricted area of Artigas Base, not affecting surrounding environments. Concentrations of the analysed metals in unpolluted sites had the same order of magnitude recorded in other unpolluted areas of the Fildes Peninsula and other Antarctic regions.

Keywords

Human impact Heavy metals Sediment Soil Antarctica 

Notes

Acknowledgments

The authors would like to thank CSIC (Comisión Sectorial de Investigación Científica, Universidad de la República) and the Uruguayan Antarctic Institute (IAU) for their support. SNI-ANII (Agencia Nacional de Investigación e Innovación) is acknowledged for its support to N Venturini. Special thanks to the crew ‘Antarkos XXXI’ of Artigas Antarctic Scientific Base for helping during sampling surveys. Also, the Department of Scientific Coordination of the IAU is very much acknowledged by the authors for supporting the development of this work. This work is part of the Project IAU-P-DCC-15.

References

  1. Abakumov, E., Lupachev, A., & Andreev, M. (2017). Trace element content in soils of the King George and Elephant islands, maritime Antarctica. Chemistry and Ecology.  https://doi.org/10.1080/02757540.2017.1384821.
  2. Alfonso, J. A., Vasquez, Y., Hernandez, A. C., Mora, A., Handt, H., & Sira, E. (2015). Geochemistry of recent lacustrine sediments from Fildes Peninsula, King George Island, maritime Antarctica. Antarctic Science, 27, 1–10.CrossRefGoogle Scholar
  3. Alkarkhi, A. F. M., Ismail, N., Ahmed, A., & Mat Easa, A. (2009). Analysis of heavy metal concentrations in sediments of selected estuaries of Malaysia—a statistical assessment. Environmental Monitoring and Assessment, 153, 179–185.CrossRefGoogle Scholar
  4. Amaro, E., Padeiro, A., Mão de Ferro, A., Mota, A. M., Leppe, M., Verkulich, S., Hughes, K. A., Hans-Ulrich, P., & Canário, J. (2015). Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Marine Pollution Bulletin, 97, 523–527.CrossRefGoogle Scholar
  5. Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400, 212–226.CrossRefGoogle Scholar
  6. Birch, G.F. (2011). Indicators of anthropogenic change and biological risk in coastal aquatic environments. In: Wolanski E, McLusky DS. Treatise on estuarine and coastal science. Ed. Waltham: Academic Press. Publisher: Elsevier, 235–270.Google Scholar
  7. Birch, G. F. (2017). Determination of sediment metal background concentrations and enrichment in marine environments—a critical review. Science of the Total Environment, 580, 813–831.CrossRefGoogle Scholar
  8. Braun, C., Mustafa, O., Nordt, A., Pfeiffer, S., & Peter, H.-U. (2012). Environmental monitoring and management proposals for the fildes region (King George Island, Antarctica). Polar Research, 31, 18206.  https://doi.org/10.3402/polar.v31i0.18206.CrossRefGoogle Scholar
  9. Braun, C., Hertel, F., Mustafa, O., Nordt, A., Pfeiffer, S. & Peter, H-U. (2014). Environmental assessment and management challenges of the Fildes Peninsula Region. Tin et al., (eds.), Antarctic futures, Springer Media Dordrecht, 169–191.Google Scholar
  10. Byers, S. C., Mills, E. L., & Sewart, P. L. (1978). A comparison of methods to determining organic carbon in marine sediments, with suggestion for a standard method. Hydrobiology, 58, 37–43.CrossRefGoogle Scholar
  11. Cowan, D. A., Chown, S. L., Convey, P., Tuffin, M., Hughes, K. A., & Pointing, S. (2011). Non-indigenous microorganisms in the Antarctic: assessing the risks. Trends in Microbiology, 19, 540–548.CrossRefGoogle Scholar
  12. Crocket, A. B. (1998). Background levels of metals in soils, McMurdo station, Antarctica. Environmental Monitoring and Assessment, 50, 289–296.CrossRefGoogle Scholar
  13. Cury, J. C., Jurelevicius, D. A., Villela, H. D. M., Jesus, H. E., Peixoto, R. S., Schaefer, C. E. G. R., Bícego, M. C., Seldin, L., & Rosado, A. S. (2014). Microbial diversity and hydrocarbon depletion in low and high diesel-polluted soil samples from Keller Peninsula, South Shetland Islands. Antarctic Science, 27, 263–227.CrossRefGoogle Scholar
  14. Du Laing, G. (2011). Redox metal processes and controls in estuaries. In: Wolanski E, McLusky DS. Treatise on estuarine and coastal science. Ed. Waltham: Academic Press. Publisher: Elsevier, 115–141.Google Scholar
  15. Hernández, A. C., Bastias, J., Matus, D., & Mahaney, W. C. (2018). Provenance, transport and diagenesis of sediment in polar areas: a case study in Profound Lake, King George Island, Antarctica. Polar Research, 37, 1–12.  https://doi.org/10.1080/17518369.2018.1490619.CrossRefGoogle Scholar
  16. Horowitz, A.J. (1985). A primer on trace metal-sediment chemistry. United States Geological Survey Water-Supply paper 2277. 67 pp.Google Scholar
  17. Ianni, C., Magi, E., Soggia, F., Rivaro, P., & Frache, R. (2010). Trace metal speciation in coastal and off-shore sediments from Ross Sea (Antarctica). Microchemical Journal, 96, 203–212.CrossRefGoogle Scholar
  18. Krzyszowska, A. (1993). Human impact around polar stations on Fildes Peninsula (King George Island, Antarctica). XX Polar Symposium, Lublin. 203–208.Google Scholar
  19. López-Martínez, J., Schmid, T., Serrano, E., Mink, S., Nieto, A., & Guillaso, S. (2016). Geomorphology and surface landforms distribution in selected ice-free areas in the South Shetland Islands, northern Antarctic peninsula region. Cuadernos de Investigación Geográfica, 42, 435–455.CrossRefGoogle Scholar
  20. Lu, Z., Cai, M., Wang, J., Yang, H., & He, J. (2012). Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environmental Monitoring and Assessment, 184, 7013–7021.CrossRefGoogle Scholar
  21. Luoma, S. N., & Rainbow, P. S. (2008). Metal contamination in aquatic environments: science and lateral management. Cambridge: Cambridge University Press 573 pp.Google Scholar
  22. Michel, R. F. M., Schafer, C. E. G. R., López-Martínez, J., Simas, F. N. B., Haus, N. W., Serrano, E., & Bockheim, J. G. (2014). Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica. Geomorphology, 225, 76–86.CrossRefGoogle Scholar
  23. Müller, V. G. (1986). Schadstoffe in Sedimenten - Sedimente als Schadstoffe. Mitteilungen der Österreichischen Geologischen Gesellschaft, 79, 107–126.Google Scholar
  24. Negri, A., Burns, K., Boyle, S., Brinkman, D., & Webster, N. (2006). Contamination in sediments, bivalves and sponges of McMurdo Sound, Antarctica. Environmental Pollution, 143, 456–467.CrossRefGoogle Scholar
  25. Padeiro, A., Amaro, E., Dos Santos, M. M., Araújo, M. F., Gomes, S. S., Leppe, M., Verkulich, S., Hughes, K. A., Peter, H. U., & Canário, J. (2016). Trace element contamination and availability in the Fildes Peninsula, King George Island, Antarctica. Environmental Science Processes & Impacts, 18, 648–657.CrossRefGoogle Scholar
  26. Peter, H-U, Braun, C., Mustafa, O. & Pfeiffer, S. (2008). Risk assessment for the Fildes Peninsula and Ardley Island, and development of management plans for their designation as Specially Protected or Specially Managed Areas. German Federal Environment Agency, Dessau, 508 pp.Google Scholar
  27. Ribeiro, A. P., Figueira, R. C. L., Martins, C. C., Silva, C. R. A., Franca, E. J., Bícego, M. C., Mahiques, M. M., & Montone, R. C. (2011). Arsenic and trace metal contents in sediment profiles from the Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 62, 192–196.CrossRefGoogle Scholar
  28. Rodríguez, C., Iglesias, K., Bícego, M. C., Taniguchi, S., Sasaki, S. T., Kandratavicius, N., Bueno, C., Brugnoli, E., & Venturini, N. (2018). Hydrocarbons in soil and meltwater stream sediments near Artigas Antarctic Research Station: origin, sources and levels. Antarctic Science, 30, 170–182.CrossRefGoogle Scholar
  29. Romaniuk, K., Ciok, A., Decewicz, P., Uhrynowski, W., Budzik, K., Nieckarz, M., Pawlowska, J., Zdanowski, M. K., Bartosik, D., & Dziewit, L. (2018). Insight into heavy metal resistome of soil psychrotolerant bacteria originating from King George Island (Antarctica). Polar Biology, 41, 1319–1333.CrossRefGoogle Scholar
  30. Santos, I. R., Silva-Filho, E. V., Schaefer, C. E. G. R., Albuquerque-Filho, M. R., & Campos, L. S. (2005). Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin, 50, 185–194.CrossRefGoogle Scholar
  31. SCAR (1959). Tratado Antártico. Conferencia de la Antártida, Washington. 53 pp.Google Scholar
  32. Suguio, K. (1973). Introdução a Sedimentologia. Edgard Blucher, EDUSP, São Paulo. 317 pp.Google Scholar
  33. Szopińska, M., Namiesnik, J., & Polkowska, J. (2016). How important is research on pollution levels in Antarctica? Historical approach, difficulties and current trends. Reviews of Environmental Contamination and Toxicology, 239, 79–156.Google Scholar
  34. Tin, T., Fleming, Z. L., Hughes, K. A., Ainley, D. G., Convey, P., Moreno, C. A., Pfeiffer, S., Scott, J., & Snape, I. (2009). Review impacts of local human activities on the Antarctic environment. Antarctic Science, 21, 3–33.CrossRefGoogle Scholar
  35. Tin, T., Lamers, M., Liggett, D., Maher, P. T., & Hughes, K. A. (2014). Setting the scene: human activities, environmental impacts and governance arrangements in Antarctica. In T. Tin, D. Liggett, P. Maher, & M. Lamers (Eds.), Antarctic Futures. Dordrecht: Springer.CrossRefGoogle Scholar
  36. Tort, L. F. L., Iglesias, K., Bueno, C., Lizasoain, A., Salvo, M., Cristina, J., Kandratavicius, N., Pérez, L., Figueira, R., Bícego, M. C., Taniguchi, S., Venturini, N., Brugnoli, E., Colina, R., & Victoria, M. (2017). Wastewater contamination in Antarctic melt-water streams evidenced by virological and organic molecular markers. Science of the Total Environment, 609, 225–231.CrossRefGoogle Scholar
  37. Trevizani, T. H., Figueira, R. C. L., Ribeiro, A. P., Theophilo, C. Y. S., Majer, A. P., Petti, M. A. V., Corbisier, T. N., & Montone, R. C. (2016). Bioaccumulation of heavy metals in marine organisms and sediments from Admiralty Bay, King George Island, Antarctica. Marine Pollution Bulletin, 106, 366–371.CrossRefGoogle Scholar
  38. USEPA. (1996). Method 3050B. Acid digestion of sediments, sludges and soil. Revision 2. December.Google Scholar
  39. Vieira, R., Marotta, H., Rosa, K. K., Jana, R., Simoes, C. L., Souza Junior, E., Ferreira, F., Ramos, J. V. S., Santos, L. R. S., Perroni, M. A., Goncalves, M., Felizardo, J. P. S., Rodrigues, R. I., & Galvao, J. C. M. (2015). Análisis sedimentológico y geomorfológico de áreas lacustres en la Península Fildes, Isla Rey Jorge, Antártica Marítima. Investigaciones Geográficas, (49), 3–30.Google Scholar
  40. Vodopivez, C., Smichowski, P & Marcovecchio, J. (2001). Trace metals monitoring as a tool for characterization of Antarctic ecosystems. In: Environmental contamination in Antarctica. A challenge to analytical chemistry. Ed: S. Caroli, P. Cescon and D.W.H. Walton.Google Scholar
  41. Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology, 30, 377–392.CrossRefGoogle Scholar
  42. Wuana R.A. & Okieimen, F.E. (2011). Review article. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. International Scholarly Research Network ISRN Ecology 20 pp.Google Scholar
  43. Xie, Z., & Sun, L. (2008). A 1,800-year record of arsenic concentration in the penguin dropping sediment, Antarctic. Environmental Geology, 55, 1055–1059.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • C. Bueno
    • 1
  • N. Kandratavicius
    • 1
  • N. Venturini
    • 1
    • 2
  • R. C. L. Figueira
    • 3
  • L. Pérez
    • 4
  • K. Iglesias
    • 2
  • E. Brugnoli
    • 1
  1. 1.Oceanografía y Ecología Marina, Instituto de Ecología y Ciencias Ambientales, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Laboratorio de Biogeoquímica Marina. Instituto de Ecología y Ciencias Ambientales, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Laboratório de Química Inorgânica Marinha, Instituto OceanográficoUniversidade de São PauloSão PauloBrazil
  4. 4.Centro Universitario Regional EsteUniversidad de la RepúblicaRochaUruguay

Personalised recommendations