Water, Air, & Soil Pollution

, 229:396 | Cite as

Assessment of Koelreuteria paniculata Seedling for Phytroremediation of Pyrene-Contaminated Soils

  • Tingwei Liu
  • Fan ZhuEmail author
  • Wende Yan
  • Xiaoyong Chen
  • Xinhao Huang
  • Renjie Wang
  • Xuxu Wang
  • Hui Kang
  • Xuankai Yi


Phytoremediation is a cost-effective and environmentally friendly technology using plants for the cleanup of both inorganic and organic contaminated sites. In this study, a pot culture experiment has been conducted for 180 days in a greenhouse to examine the capability of Koelreuteria paniculata on pyrene (Pyr) dissipation in contaminated soil. Three treatments were employed and they were: (1) polluted soil with K. paniculata fine roots addition (T1), (2) polluted soil with planted seedlings (T2), and (3) polluted soil (C). Results showed Pyr concentration in soils was reduced by 21.4, 36.2, and 86.4% by natural losses, fine roots addition, and planted K. paniculata treatments, respectively, meaning plants substantially enhanced the dissipation of Pyr from soil. Cultivated K. paniculata seedlings significantly increased soil total nitrogen (TN), total organic carbon, dissolved organic carbon (DOC), and microbial biomass carbon, but not total phosphorus, when compared to the control. The removal efficiency of Pyr was lower in the adding of fine roots treatment than in the planted K. paniculata treatment. The principal component analysis indicated the promotional dissipation of Pyr in soil by planted K. paniculata was likely attributed to increased microbial quantity and activity, DOC, and TN content in the rhizosphere. Our results suggest that K. paniculata is a suitable plant species used in phytoremediation for Pyr-contaminated soils and the efficiency on the dissipation of Pyr is considerably enhanced using living plants than adding dead organic matters. The study provided a reference for the application of K. paniculata in the remediation of Pyr-contaminated soil.


Phytroremediation Pyrene Rhizosphere Soil PAHs Koelreuteria paniculata 



The authors thank the Key Research and Development Project of Hunan Province (2017NK2171), Ecology Discipline and Nature Science Foundation of Hunan Provincial Innovative Research Team (2013) for financial support.


  1. Abdel-Shafy, H. I., & Mansour, M. S. M. (2016). A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123.CrossRefGoogle Scholar
  2. Badri, D. V., & Vivanco, J. M. (2009). Regulation and function of root exudates. Plant Cell & Environment, 32(6), 666–681.CrossRefGoogle Scholar
  3. Bisht, S., Pandey, P., Bhargava, B., Sharma, S., Kumar, V., & Sharma, K. D. (2015). Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Brazilian Journal of Microbiology, 46(1), 7–21.CrossRefGoogle Scholar
  4. Cheema, S. A., Imran, K. M., Shen, C., Tang, X., Farooq, M., Chen, L., Zhang, C. K., & Chen, Y. X. (2010). Degradation of phenanthrene and pyrene in spiked soils by single and combined plants cultivation. Journal of Hazardous Materials, 177, 384–389.CrossRefGoogle Scholar
  5. D'Orazio, V., Ghanem, A., & Senesi, N. (2013). Phytoremediation of pyrene contaminated soils by different plant species. CLEAN-Soil, Air, Water., 41(4), 377–382.CrossRefGoogle Scholar
  6. Gao, Y., Wu, S. C., Yu, X. Z., & Wong, M. H. (2010). Dissipation gradients of phenanthrene and pyrene in the rice rhizosphere. Environmental Pollution, 158(8), 2596–2603.CrossRefGoogle Scholar
  7. Guo, M. X., Gong, Z. Q., Miao, R. H., Su, D., Li, X. J., Jia, C. Y., & Zhuang, J. (2017). The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure. Ecological Engineering, 99, 22–30.CrossRefGoogle Scholar
  8. Haichar, F. E. Z., Santaella, C., Heulin, T., & Achouak, W. (2014). Root exudates mediated interactions belowground. Soil Biology & Biochemistry, 77(7), 69–80.CrossRefGoogle Scholar
  9. Han, X. M., Liu, Y. R., Zhang, L. M., & He, J. Z. (2015). Insight into the modulation of dissolved organic matter on microbial remediation of PAH-contaminated soils. Microbial Ecology, 70(2), 400–410.CrossRefGoogle Scholar
  10. Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated ph changes in the rhizosphere and their responses to environmental constraints: a review. Plant & Soil, 248(1–2), 43–59.CrossRefGoogle Scholar
  11. Kemp, P. R., Reynolds, J. F., Virginia, R. A., & Whitford, W. G. (2003). Decomposition of leaf and root litter of Chihuahuan desert shrubs: effects of three years of summer drought. Journal of Arid Environments, 53(1), 21–39.CrossRefGoogle Scholar
  12. Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60(5), 71–80.CrossRefGoogle Scholar
  13. Kuiper, I., Lagendijk, E. L., Bloemberg, G. V., & Lugtenberg, B. J. (2004). Rhizoremediation: a beneficial plant-microbe interaction. Molecular Plant-Microbe Interactions, 17(1), 6–15.CrossRefGoogle Scholar
  14. Kumar, V., Saikia, J., Barik, & Das, T. (2017). Effect of integrated nutrient management on soil enzymes, microbial biomass carbon and microbial population under okra cultivation. International Journal of Biochemistry Research & Review, 20(4), 1–7.CrossRefGoogle Scholar
  15. Lee, S. H., Lee, W. S., Lee, C. H., & Kim, J. G. (2008). Degradation of phenanthrene and pyrene in rhizosphere of grasses and legumes. Journal of Hazardous Materials, 153(1), 892–898.CrossRefGoogle Scholar
  16. Leigh, M. B., Fletcher, J. S., Fu, X., & Schmitz, F. J. (2002). Root turnover: an important source of microbial substrates in rhizosphere remediation of recalcitrant contaminants. Environmental Science & Technology, 36(7), 1579–1583.CrossRefGoogle Scholar
  17. Liang, X. C., Yan, W. D., Tian, D. L., Zhu, F., Wang, G. J., & Zheng, W. (2012). Phytoremediation of polycyclic aromatic hydrocarbons in soils by Cinnamomum camphora and impact factors. Journal of Central South University of Forestry & Technology, 32(12), 177–180 (in Chinese).Google Scholar
  18. Lin, C. F., Yang, Y. S., Guo, J. F., Chen, G. S., & Xie, J. S. (2010). Fine root decomposition of evergreen broadleaved and coniferous tree species in mid-subtropical China: dynamics of dry mass, nutrient and organic fractions. Plant & Soil, 338(1–2), 331–327.Google Scholar
  19. Liste, H. H., & Alexander, M. (2000). Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere, 40(1), 11–14.CrossRefGoogle Scholar
  20. Luo, Y. Q., Zhao, X. Y., Li, Y. Q., Zuo, X. A., Jie, L., & Tao, W. (2016). Root decomposition of Artemisia halodendron, and its effect on soil nitrogen and soil organic carbon in the horqin sandy land, northeastern China. Ecological Research, 31(4), 535–545.CrossRefGoogle Scholar
  21. Matsodoum Nguemté, P., Djumyom Wafo, G. V., Djocgoue, P. F., Kengne Noumsi, I. M., & Wanko Ngnien, A. (2018). Potentialities of six plant species on phytoremediation attempts of fuel oil-contaminated soils. Water, Air, & Soil Pollution, 229(3), 88.CrossRefGoogle Scholar
  22. Miya, R. K., & Firestone, M. K. (2001). Enhanced phenanthrene biodegradation in soil by slender oat root exudates and root debris. Journal of Environmental Quality, 30(6), 1911–1918.CrossRefGoogle Scholar
  23. Moretto, A. S., Distel, R. A., & Didoné, N. G. (2001). Decomposition and nutrient dynamic of leaf litter and roots from palatable and unpalatable grasses in a semi-arid grassland. Applied Soil Ecology, 18(1), 31–37.CrossRefGoogle Scholar
  24. Mueller, K. E., & Shann, J. R. (2006). PAH dissipation in spiked soil: impacts of bioavailability, microbial activity, and trees. Chemosphere, 64(6), 1006–1014.CrossRefGoogle Scholar
  25. Nguyen, C. (2003). Rhizodeposition of organic C by plant: mechanisms and controls. Agronomie, 23, 375–396.CrossRefGoogle Scholar
  26. Parrish, Z. D., Banks, M. K., & Schwab, A. P. (2005). Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue. Journal of Environmental Quality, 34(1), 207–216.CrossRefGoogle Scholar
  27. Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review Plant Physiology and Plant Molecular Biology, 49(49), 643–668.CrossRefGoogle Scholar
  28. Setiawati, T. C. (2014). Correlations between soil microbe and soil chemical properties in limestone mining area: case study at Southern Jember Indonesia. International Conference on Chemical, Environment & Biological Sciences, Sept. 17–18. Kuala Lumpur (Malaysia).
  29. Shahsavari, E., Adetutu, E. M., Taha, M., & Ball, A. S. (2015). Rhizoremediation of phenanthrene and pyrene contaminated soil using wheat. Journal of Environmental Management, 155, 171–176.CrossRefGoogle Scholar
  30. Shaw, L. J., & Burns, R. G. (2003). Biodegradation of organic pollutants in the rhizosphere. Advances in Applied Microbiology, 53, 1–60.CrossRefGoogle Scholar
  31. Shen, H. Z., Huang, Y., Wang, R., Zhu, D., Li, W., Shen, G. F., Wang, B., Zhang, Y. Y., Chen, Y. C., Lu, Y., Chen, H., Li, T. C., Sun, K., Li, B. G., Liu, W. X., Liu, J. F., & Tao, S. (2013). Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environmental Science & Technology, 47(12), 6415–6424.CrossRefGoogle Scholar
  32. Shi, S., Richardson, A. E., O'Callaghan, M., Deangelis, K. M., Jones, E. E., Stewart, A., Firestone, M. K., & Condron, L. M. (2011). Effects of selected root exudate components on soil bacterial communities. FEMS Microbiology Ecology, 77(3), 600–610.CrossRefGoogle Scholar
  33. Sun, T. R., Cang, L., Wang, Q. Y., Zhou, D. M., Cheng, J. M., & Xu, H. (2010). Roles of abiotic losses, microbes, plant roots, and root exudates on phytoremediation of PAHs in a barren soil. Journal of Hazardous Materials., 176, 919–925.CrossRefGoogle Scholar
  34. Tejeda-Agredano, M. C., Gallego, S., Vila, J., Grifoll, M., Ortega-Calvo, J. J., & Cantos, M. (2013). Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil. Soil Biology & Biochemistry, 57(3), 830–840.CrossRefGoogle Scholar
  35. Tong, J., Xiang, W. H., Liu, C., Lei, P. F., Tian, D. L., Deng, X. W., & Peng, C. H. (2012). Tree species effects on fine root decomposition and nitrogen release in subtropical forests in southern China. Transactions of the Botanical Society of Edinburgh, 5(3), 323–331.Google Scholar
  36. Wang, W. J., Baldock, J. A., Dalal, R. C., & Moody, P. W. (2004). Decomposition dynamics of plant materials in relation to nitrogen availability and biochemistry determined by NMR and wet-chemical analysis. Soil Biology & Biochemistry, 36(12), 2045–2058.CrossRefGoogle Scholar
  37. Wilcke, W. (2000). Polycyclic aromatic hydrocarbons (PAHs) in soil—a review. Journal of Plant Nutrition and Soil Science, 163(3), 229–248.CrossRefGoogle Scholar
  38. Xu, W. Q., Liu, J. X., Liu, X. Z., Li, K., Zhang, D. Q., & Yan, J. H. (2013). Fine root production, turnover, and decomposition in a fast-growth eucalyptus urophylla, plantation in southern China. Journal of Soils & Sediments, 13(7), 1150–1160.CrossRefGoogle Scholar
  39. Yan, J., Wang, L., Fu, P. P., & Yu, H. (2004). Photomutagenicity of 16 polycyclic aromatic hydrocarbons from the US EPA priority pollutant list. Mutation Research, 557(1), 99–108.CrossRefGoogle Scholar
  40. Yoshitomi, K. J., & Shann, J. R. (2001). Corn (Zea mays L.) root exudates and their impact on 14C-pyrene mineralization. Soil Biology & Biochemistry, 33(12), 1769–1776.CrossRefGoogle Scholar
  41. Yu, X. Z., Wu, S. C., Wu, F. Y., & Wong, M. H. (2011). Enhanced dissipation of PAHs from soil using mycorrhizal ryegrass and PAH-degrading bacteria. Journal of Hazardous Materials, 186(2–3), 1206–1217.CrossRefGoogle Scholar
  42. Zhang, X. Q., & Wu, K. H. (2001). Fine-root production and turnover for forest ecosystems. Scientia Silvae Sinicae, 37(3), 126–138 (in Chinese).Google Scholar
  43. Zhang, X. Q., Wu, K. H., & Murach, D. (2000). A review of methods for fine-root production and turnover of trees. Acta Ecologica Sinica, 20(5), 875–883 (in Chinese).Google Scholar
  44. Zhang, J. Y., Yu, F., & Yu, Y. C. (2017). Content and source apportionment of polycyclic aromatic hydrocarbons in surface soil in major areas of China. Ecology and Environmental Sciences, 26(6), 1059–1067 (in Chinese).Google Scholar
  45. Zhu, F., Tian, D. L., Yan, W. D., Liang, X. C., & Wang, G. J. (2011). Phytoremediation of polycyclic aromatic hydrocarbons contaminated soils by Koelreuteria bipinnata. Journal of Northwest Forestry University, 26(1), 52–55 (in Chinese).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Tingwei Liu
    • 1
  • Fan Zhu
    • 1
    Email author
  • Wende Yan
    • 1
  • Xiaoyong Chen
    • 2
  • Xinhao Huang
    • 1
  • Renjie Wang
    • 1
  • Xuxu Wang
    • 1
  • Hui Kang
    • 1
  • Xuankai Yi
    • 1
  1. 1.National Engineering Laboratory for Applied Forest Ecological Technology in Southern China, College of Life Science and TechnologyCentral South University of Forestry and TechnologyChangshaPeople’s Republic of China
  2. 2.College of Arts and SciencesGovernors State UniversityUniversity ParkUSA

Personalised recommendations