Advertisement

Water, Air, & Soil Pollution

, 229:390 | Cite as

Influence of Pygoscelis Penguin Colonies on Cu and Pb Concentrations in Soils on the Ardley Peninsula, Maritime Antarctica

  • Alessandra Perfetti-Bolaño
  • Lucila Moreno
  • Roberto Urrutia
  • Alberto Araneda
  • Ricardo Barra
Article
  • 104 Downloads

Abstract

Penguins can bioaccumulate metals, a portion of which can be deposited in the environment through organic remains such as excrement, carcasses, and eggshells. In order to determine Cu and Pb concentrations and their relationship to soil, organic matter and grain size were determined in 27 samples collected in zones without penguins, penguin transit zones, and Adelie (Pygoscelis adeliae), Chinstrap (P. antarctica), and Gentoo penguin (P. papua) colonies on the Ardley Peninsula, Maritime Antarctica. An atomic absorption spectrophotometry analysis was carried out, organic matter was determined by loss on ignition, and grain size was measured with a laser diffraction particle size analyzer. The principal component analysis shows a relationship between the variables Cu, Pb, and grain size and areas with penguin presence. Cu concentrations in soils varied among areas (χ2, 15.707; p = 0.0004), with higher concentrations in transit zones and penguin colonies (142.63 and 140.79 mg/kg, respectively) than in zones without penguins (83.33 mg/kg). Pb concentrations in soils also varied among areas (χ2, 6.5029; p = 0.0387), and were higher in transit zones (5.92 mg/kg) than in the penguin colonies (4.45 mg/kg). Grain size differed significantly among areas (χ2, 13.506; p = 0.0012), with higher values in transit zones (avg. 37.38 μm) than in penguin colonies (avg. 26.93 μm) and zones without penguins (avg. 20.72 μm). Organic matter did not differ significantly among the studied zones (χ2, 2.0882; p = 0.3520). There is a positive correlation between Cu-Pb (Rho, 0.5532; p = 0.0028), Cu-grain size (Rho, 0.4756; p = 0.0130) and Pb-grain size (Rho, 0.4879; p = 0.0098). The presence of penguins increases Cu concentrations in Antarctic soils due to its bioaccumulation and elimination through excrement; however, the presence of penguins has a minor influence on Pb concentration in soil, probably because this metal is stored efficiently in bones, feathers, and eggshells.

Keywords

Antarctica Penguins Pollution Soil 

Notes

Acknowledgements

The authors would like to thank Instituto Antártico Chileno (INACH) and Correos de Chile for their support in carrying out this project (PR_01-12) during ECA 49. R. Barra and R. Urrutia are grateful for the support of CRHIAM (CONICYT/FONDAP 15130015).

References

  1. Abakumov, E., Lupachev, A., & Andreev, M. (2017). Trace element content in soils of the King George and Elephant islands, maritime Antarctica. Chemistry and Ecology, 33(9), 856–868.CrossRefGoogle Scholar
  2. Agency for Toxic Substances and Disease Registry (ATSDR). (2007). Public health statement lead. 13 pp.Google Scholar
  3. Amaro, E., Padeiro, A., de Ferro, A. M., Mota, A. M., Leppe, M., Verkulich, S., & Canário, J. (2015). Assessing trace element contamination in Fildes peninsula (king George Island) and Ardley Island, Antarctic. Marine Pollution Bulletin, 97(1–2), 523–527.CrossRefGoogle Scholar
  4. Ancora, S., Volpi, V., Olmastroni, S., Focardi, S., Leonzio, C. (2002). Assumption and elimination of trace elements in Adélie penguins from Antarctica: a preliminary study. Marine Environmental Research, 54: 341–344,  https://doi.org/10.1016/S0141-1136(02)00198-8.
  5. Bargagli, R. (2008). Environmental contamination in Antarctic ecosystems. Science of the Total Environment, 400, 212–226.  https://doi.org/10.1016/j.scitotenv.2008.06.062.CrossRefGoogle Scholar
  6. Berguño, J. (2009). Evolución y perspectivas del Sistema Antártico. Revista De Historia Internacional, 39, 70–84.Google Scholar
  7. Bernal, M. P., Clemente, R., & Walker, D. J. (2007). The role of organic amendments in the bioremediation of heavy metal-polluted soils. In R. W. Gore (Ed.), Environmental research at the leading edge (pp. 1–57). New York: Nova Science Publishers Inc..Google Scholar
  8. Besnard, E., Chenu, C., & Robert, M. (2001). Influence of organic amendments on copper distribution among particle-size and density fractions in champagne vineyard soils. Environmental Pollution, 112, 329–337.  https://doi.org/10.1016/S0269-7491(00)00151-2.CrossRefGoogle Scholar
  9. Blais, J. M., Macdonald, R. W., Mackay, D., Webster, E., Harvey, C., & Smol, J. P. (2007). Biologically mediated transport of contaminants to aquatic systems. Environmental Science & Technology, 41(4), 1075–1084.  https://doi.org/10.1021/es061314a.CrossRefGoogle Scholar
  10. Blott, J. (2010). Gradistat version 8.0: a grain size distribution and statistics package for the analysis of unconsolidated sediments by sieving or laser granulometer. Kenneth Pye Associates Ltd., Berkshire.Google Scholar
  11. Bradl, H. B. (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277, 1–18.  https://doi.org/10.1016/j.jcis.2004.04.005.CrossRefGoogle Scholar
  12. Buduba, C. (2004). Muestreo de suelos. Criterios básicos. Patagonia Forestal, 10(1), 9–12.Google Scholar
  13. Cañizares-Villanueva, R. (2000). Biosorción de metales pesados mediante el uso de biomasa microbiana. Revista de Microbiologia, 42, 131–143.Google Scholar
  14. Carrasco, M. A., & Préndez, M. (1991). Elemental distribution of some soils of continental Chile and the Antarctic peninsula: projection to atmospheric pollution. Water, Air, and Soil Pollution, 57, 713.CrossRefGoogle Scholar
  15. Celis, J., Jara, S., González-Acuña, D., Barra, R., & Espejo, W. (2012). A preliminary study of trace metals and porphyrins in excreta of Gentoo penguins (Pygoscelis papua) at two locations of the Antarctic Peninsula. Archivos de medicina veterinaria, 44, 311–316.  https://doi.org/10.4067/S0301-732X2012000300016.CrossRefGoogle Scholar
  16. Celis, J., Barra, R., Espejo, W., González-Acuña, D., & Jara, S. (2015). Trace element concentrations in biotic matrices of Gentoo penguins (Pygoscelis papua) and coastal soils from different locations of the Antarctic peninsula. Water, Air, & Soil Pollution, 226, 2266.CrossRefGoogle Scholar
  17. Dalfior, B. M., Roriz, L. D., Júnior, R. F., de Freitas, A. C., da Silva, H. E., Carneiro, M. T. W. D., Licinio, M. V. V. J., & Brandão, G. P. (2016). Avaliaçao dos teores de Pb, Cd, Sn, Co, Hg, Mo e As em solos da Península Fildes - Antártica. Química Nova, 39(8), 893–900.Google Scholar
  18. Deheyn, D. D., Gendreau, P., Baldwin, R. J., & Latz, M. I. (2005). Evidence for enhanced bioavailability of trace elements in the marine ecosystem of Deception Island, a volcano in Antarctica. Marine Environmental Research, 60(1), 1–33.  https://doi.org/10.1016/j.marenvres.2004.08.001.CrossRefGoogle Scholar
  19. Espejo, W., Celis, J. E., Sandoval, M., González-Acuña, D., Barra, R., & Capulín, J. (2017). The impact of penguins on the content of trace elements and nutrients in coastal soils of North Western Chile and the Antarctic peninsula area. Water, Air, & Soil Pollution, 228(3), 116.CrossRefGoogle Scholar
  20. Forcada, J. (2007). El cambio climático y sus repercusiones para la megafauna antártica. Duarte, C. In: Fundación BBVA (ed.). Impactos del calentamiento global sobre los ecosistemas polares. Bilbao, pp 83–108,  https://doi.org/10.1111/j.1748-5827.2007.00325.x.
  21. Flores-Vélez, L. M., Ducaroir, J., Jaunet, A. M., & Robert, M. (1996). Study of the distribution of copper in an acid sandy vineyard soil by three different methods. European Journal of Soil Science, 47, 523–532.  https://doi.org/10.1111/j.1365-2389.1996.tb01852.x.CrossRefGoogle Scholar
  22. Ford, J., Landers, D., Kugler, D., Lasorsa, B., Allen-Gil, S., Crecelius, E., & Martinson, J. (1995). Inorganic contaminants in Arctic Alaskan ecosystems: long-range atmospheric transport or local point sources? Science of the Total Environment, 160(161), 323–335.CrossRefGoogle Scholar
  23. Gulson, B. L., Tiller, K. G., Mizon, K. J., & Merry, R. H. (1981). Use of lead isotopes in soils to identify the source of lead contamination near Adelaide. South Australia. Environmental Science & Technology, 15, 691–696.  https://doi.org/10.1021/es00088a008.CrossRefGoogle Scholar
  24. Guo, X., Zhang, S., Shan, X., Luo, L., Pei, Z., Zhu, Y., Liu, T., Xie, Y., & Gaults, A. (2006). Characterization of Pb, Cu and Cd adsorption on particulate organic matter in soil. Environmental Toxicology and Chemistry, 25, 9.CrossRefGoogle Scholar
  25. Heiri, O., Lotter, A., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25, 101–110.  https://doi.org/10.1023/A:1008119611481.CrossRefGoogle Scholar
  26. Jerez, S., Motas, M., Palacios, M. J., Valera, F., Cuervo, J. J., & Barbosa, A. (2011). Concentration of trace elements in feathers of three Antarctic penguins: geographical and interspecific differences. Environmental Pollution, 159, 2412–2419.  https://doi.org/10.1016/j.envpol.2011.06.036.CrossRefGoogle Scholar
  27. Jerez, S. (2012). Los pingüinos: bioindicadores de la contaminación ambiental en la península Antártica e islas asociadas. Dissertation, University of Murcia,  https://doi.org/10.4067/S0716-10182012000400018.
  28. Jerez, S., Motas, M., Benzal, J., Diaz, J., & Barbosa, A. (2013a). Monitoring trace elements in Antarctic penguin chicks from South Shetland Islands, Antarctica. Marine Pollution Bulletin, 69, 67–75.CrossRefGoogle Scholar
  29. Jerez, S., Motas, M., Benzal, J., Diaz, J., Vidal, V., D’Amico, V., & Barbosa, A. (2013b). Distribution of metals and trace elements in adult and juvenile penguins from the Antarctic peninsula area. Environmental Science and Pollution Research, 20, 3300–3311.CrossRefGoogle Scholar
  30. Kraus, S., Kurbatov, A., & Yates, M. (2013). Geochemical signatures of tephras from quaternary Antarctic peninsula volcanoes. Andean Geology, 40(1), 1–40.CrossRefGoogle Scholar
  31. Liguang, S., Renbin, Z., Xuebin, Y., Xiaodong, L., Zhouqing, X., & Yuhong, W. (2004). A geochemical method for the reconstruction of the occupation history of a penguin colony in the maritime Antarctic. Polar Biology, 27(11), 670–678.  https://doi.org/10.1007/s00300-004-0635-z.CrossRefGoogle Scholar
  32. Lozada-Zarate, E., Monks, S., Pulido-Flores, G., Gordillo-Martínez, A., Prieto-García, F. (2006). Determinación de metales pesados en Cyprinus carpio en la laguna de Metztitlán, Hidalgo, México. IV foro de investigadores por la conservación y II simposio de áreas naturales protegidas del estado de Hidalgo el 16 y 17 de octubre de 2006 en Pachuca, Hidalgo, México.Google Scholar
  33. Lu, Z., Cai, M., Wang, J., Yang, H., & He, J. (2012). Baseline values for metals in soils on Fildes peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environmental Monitoring and Assessment, 184, 7013–7021.  https://doi.org/10.1007/s10661-011-2476-x.CrossRefGoogle Scholar
  34. Martorell, J. (2009). Intoxicaciones en aves. Hospital clínico de pequeños animales, 29(3), 172–178.Google Scholar
  35. Mason, B. (1992). Preparation of soil sampling protocols: sampling techniques and strategies. Environmental Protection Agency, Washington, pp 169.Google Scholar
  36. Mendonça, T., Melo, V., Alleoni, L., Schaefer, C., & Michel, R. (2013). Lead adsorption in the clay fraction of two soil profiles from Fildes peninsula. King George Island. Antarctic Science, 25(3), 389–396.CrossRefGoogle Scholar
  37. Metcheva, R., & Yurukova, L. (2011). Biogenic and toxic elements in feathers, eggs, and excreta of Gentoo penguin (Pygoscelis papua ellsworthii) in the Antarctic. Environmental Monitoring and Assessment, 182, 571–585.  https://doi.org/10.1007/s10661-011-1898-9.CrossRefGoogle Scholar
  38. Michelutti, N., Blais, J. M., Mallory, M. L., Brash, J., Thienpont, J., Kimpe, L. E., Douglas, M. S. V., & Smol, J. (2010). Trophic position influences the efficacy of seabirds as metal biovectors. Proceedings of the National Academy of Sciences of the United States of America, 107, 10543–10548.  https://doi.org/10.1073/pnas.1001333107.CrossRefGoogle Scholar
  39. Moskovchenko, D. V., Kurchatova, A. N., Fefilov, N. N., & Yurtaev, A. A. (2017). Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea, Russia): patterns of variation across landscapes. Environmental Monitoring and Assessment, 189, 210.CrossRefGoogle Scholar
  40. Myrcha, A., & Tatur, A. (1991). Ecological role of the current and abandoned penguin rookeries in the land environment of the maritime Antarctic. Polish Polar Research, 12(1), 3–24.Google Scholar
  41. Nie, Y., Liu, X., Sun, L., & Emslie, S. (2012). Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region. East Antarctica. Science of the Total Environment, 433, 132–140.  https://doi.org/10.1016/j.scitotenv.2012.06.022.CrossRefGoogle Scholar
  42. Nygard, T., Lie, E., Rov, N., & Steinnes, E. (2001). Metal dynamics in an Antarctic food chain. Marine Pollution Bulletin, 42(7), 598–602.  https://doi.org/10.1016/S0025-326X(00)00206-X.CrossRefGoogle Scholar
  43. Otero, X.L. & Mouriño, J. (2002). Nitrógeno (NH4+, NO3-), fósforo asimilable y metales traza (Hg, Cd, Pb, Zn, Ni y Cu) en suelos de la colonia de la gaviota patiamarilla (Larus cachinnans) en el parque natural de las islas Cíes. “Actas de la I reunión sistemas agroforestales – I reunión espacios naturales”, en Cuadernos de la sociedad española de ciencias forestales, 14: 143–149.Google Scholar
  44. Padeiro, A., Amaro, E., Correia Dos Santos, M. M., Araújo, M. F., Gomes, S. S., Leppe, M., Verkulich, S., Hughes, K. A., Peter, H., & Canário, J. (2016). Trace element contamination and availability in Fildes peninsula, King George Island, Antarctica. Environmental Science: Processes & Impacts, 15, 18(6), 648–657.Google Scholar
  45. Pereira, J. L., Pereira, P., Padeiro, A., Gonçalves, F., Amaro, E., Leppe, M., Verkulich, S., Hughes, K. A., Peter, H., & Canário, J. (2017). Environmental hazard assessment of contaminated soils in Antarctica: using a structured tier 1 approach to inform decision-making. Science of the Total Environment, 574, 443–454.  https://doi.org/10.1016/j.scitotenv.2016.09.091.CrossRefGoogle Scholar
  46. Perfetti-Bolaño, A., & Moreno, L. (2013). Lead in colonies of pygoscelid penguins in Ardley Peninsula, Antarctica. In M. Leppe et al. (Eds.), Avances en Ciencia Antártica (pp. 505–508). La Serena: Instituto Antártico Chileno.Google Scholar
  47. Peter, H.-U., Buesser, C., Mustafa, O., Pfeiffer, S. (2008). Risk assessment for the Fildes Peninsula and Ardley Island, and development of management plans for their designation as Specially Protected or Specially Managed Areas. Federal Environment Agency, Jena.Google Scholar
  48. Planchon, F. A. M., Boutron, C. F., Barbante, C., Cozzi, G., Gaspari, V., Wolff, E. W., Ferrari, C. P., & Cescon, P. (2002). Changes in heavy metals in Antarctic snow from Coats Land since the mid-19th to the late 20th century. Earth and Planetary Science Letters, 200, 207–222.  https://doi.org/10.1016/S0012-821X(02)00612-X.CrossRefGoogle Scholar
  49. Polito, M. J., Trivelpiece, W. Z., Patterson, W. P., Karnovsky, N. J., Reiss, C. S., & Emslie, S. D. (2015). Contrasting specialist and generalist patterns facilitate foraging niche partitioning in sympatric populations of Pygoscelis penguins. MEPS, 519, 221–237.CrossRefGoogle Scholar
  50. Qian, J., Shan, X., Wang, Z., & Tu, Q. (1996). Distribution and plant availability of heavy metals in different particle-size fractions of soil. Science of the Total Environment, 87, 131–141.CrossRefGoogle Scholar
  51. Ramos, L., Hernandez, L. M., & Gonzalez, M. J. (1994). Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Doñana National Park. Joenq, 23, 50–57.Google Scholar
  52. Royal Commission on Environmental Pollution (RCEP). (1983). Lead in the environment. RCEP ninth report. Southwood, T. R. E. (chairman). HMSO. London, pp 184.Google Scholar
  53. Santamans, A. C., Boluda, R., Picazo, A., Gil, C., Ramos-Miras, J., Tejedo, P., Pertierra, L. R., Benayas, J., & Camacho, A. (2017). Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants. PLoS One, 12(8), e0181901.  https://doi.org/10.1371/journal.pone.0181901.CrossRefGoogle Scholar
  54. Schulten, H. R., Leinweber, P., & Sorge, C. (1993). Composition of organic matter in particle-size fractions of an agricultural soil. European Journal of Soil Science, 44(4), 677–691.  https://doi.org/10.1111/j.1365-2389.1993.tb02332.x.CrossRefGoogle Scholar
  55. Scokart, P. O., Meeus-Verdinne, K., & De Borger, R. (1983). Mobility of heavy metals in polluted soils near zinc smelters. Water, Air, and Soil Pollution, 20, 451–463.  https://doi.org/10.1007/BF00208519.CrossRefGoogle Scholar
  56. Secretariat of the Antarctic Treaty. (2009). Final report of the thirtieth Antarctic treaty consultative meeting. Antarctic specially protected area no 150 (Ardley Island, Maxwell Bay, King George Island): revised Management Plan, pp 705.Google Scholar
  57. Secretariat of the Antarctic Treaty. (2018). Northeast beach of Ardley Island. Review [2018 10, july]. https://www.ats.aq/devAS/ats_other_template.aspx?lang=e&id=7b118862-1b68-4ee9-9ad2-56f2f2e454b7.
  58. Sheppard, D. S., Claridge, G. G. C., & Campbell, I. B. (2000). Metal contamination of soils at Scott Base. Antarctica. Applied Geochemistry, 15, 513–530.  https://doi.org/10.1016/S0883-2927(99)00055-4.CrossRefGoogle Scholar
  59. Shi, G., Teng, J., Ma, H., Wang, D., & Li, Y. (2018). Metals in topsoil in Larsemann Hills, an ice-free area in East Antarctica: lithological and anthropogenic inputs. Catena, 160, 41–49.  https://doi.org/10.1016/j.catena.2017.09.001.CrossRefGoogle Scholar
  60. Sims, D. B., Hudson, A. C., Keller, J. E., Konstantinos, V. I., & Konstantinos, M. P. (2015). Trace element scavenging in dry wash surficial sediments in an arid region of southern Nevada. USA. Mine Water and the Environment, 36(1), 124–132.CrossRefGoogle Scholar
  61. Simas, F. N. B., Schaefer, C. E. G. R., Melo, V. F., Guerra, M. B. B., Saunders, M., & Gilkes, R. (2006). Clay-sized minerals in permafrost affected soils (Cryosols) from King George Island, Antarctica. Clay Clay Min, 54, 721–736.  https://doi.org/10.1346/CCMN.2006.0540607.CrossRefGoogle Scholar
  62. Smichowski, P., Vodopivez, C., Muñoz-Olivas, R., & Gutiérrez, A. (2006). Monitoring trace elements in selected organs of Antarctic penguin (Pygoscelis adeliae) by plasma-based techniques. Microchemical Journal, 82(1), 1–7.  https://doi.org/10.1016/j.microc.2005.04.001.CrossRefGoogle Scholar
  63. Sterckeman, T., Douay, F., Proix, N., & Fourrier, H. (2000). Vertical distribution of Cd, Pb and Zn in soils near smelters in the north of France. Environmental Pollution, 107, 377–389.  https://doi.org/10.1016/S0269-7491(99)00165-7.CrossRefGoogle Scholar
  64. Stevenson, F. J., & Welch, L. F. (1979). Migration of applied lead in a field soil. Environmental Science & Technology, 13, 1255–1259.  https://doi.org/10.1021/es60158a005.CrossRefGoogle Scholar
  65. Stone, M., & Droppo, I. G. (1996). Distribution of lead, copper and zinc in sie-fractionated river bed sediment in two agricultural catchments of southern Ontario. Canada. Environmental Pollution, 93(3), 353–362.  https://doi.org/10.1016/S0269-7491(96)00038-3.CrossRefGoogle Scholar
  66. Sun, L., & Xie, Z. (2001a). Changes in lead concentration in antarctic penguin droppings during the past 3. 000 years. Environmental Geology, 40, 1205–1208.CrossRefGoogle Scholar
  67. Sun, L., & Xie, Z. (2001b). Relics: penguin population programs. Science Progress, 84(1), 000–000.CrossRefGoogle Scholar
  68. United States Environmental Protection Agency. (1992). Acid digestion of sediments, sludges, and soils method 3050. Washington, United States,  https://doi.org/10.17226/2022.
  69. US EPA Estimation programs interface suite™ for Microsoft® Windows, v[4.1]. 2018; United States Environmental Protection Agency, Washington DC, USA. Available from: http://www.epa.gov/opptintr/exposure/pubs/episuite.htm [cited 2018 10. april],  https://doi.org/10.3310/hsdr06370.
  70. Wilson, R. P. (2010). Resource partitioning and niche hyper-volume overlap in free-living pygoscelid penguins. Functional Ecology, 24(3), 646–657.  https://doi.org/10.1111/j.1365-2435.2009.01654.x.CrossRefGoogle Scholar
  71. Yan, X., Hu, Y., Chang, Y., Li, Y., Liu, M., Zhong, J., Zhang, D., & Wu, W. (2017). Effects of land reclamation on distribution of soil properties and heavy metal concentrations, and the associated environmental pollution assessment. Polish Journal of Environmental Studies, 26(4), 1809–1823.  https://doi.org/10.15244/pjoes/68533.CrossRefGoogle Scholar
  72. Yarlagadda, P. S., Matsumoto, M. R., Van Benschoten, J. E., & Kathuria, A. (1995). Characteristics of heavy metals in contaminated soils. Journal of Environmental Engineering, 121, 276–286.  https://doi.org/10.1061/(ASCE)0733-9372(1995)121:4(276).CrossRefGoogle Scholar
  73. Yin, X., Liu, X., Sun, L., Zhu, R., Xie, Z., & Wang, Y. (2006). A 1500-year record of lead, copper, arsenic, cadmium, zinc level in Antarctic seal hairs and sediments. Science of the Total Environment, 371, 252–257.  https://doi.org/10.1016/j.scitotenv.2006.07.022.CrossRefGoogle Scholar
  74. Yin, X., Xia, L., Sun, L., Luo, H., & Wang, Y. (2008). Animal excrement: a potential biomonitor of heavy metal contamination in the marine environment. Science of the Total Environment, 399, 179–185.  https://doi.org/10.1016/j.scitotenv.2008.03.005.CrossRefGoogle Scholar
  75. Yu, M. (2005). Environmental toxicology: biological and health effects of pollutants. Florida, United States.Google Scholar
  76. Zreda-Gostynska, G., Kyle, P. R., Finnegan, D., & Meeker, K. (1997). Volcanic gas emissions from Mount Erebus and their impact on the antarctic environment. Journal of Geophysical Research, 102, 15039–15055.  https://doi.org/10.1029/97JB00155.CrossRefGoogle Scholar
  77. Zwolicki, A., Barcikowski, M., Barcikowski, A., Cymerski, M., Stempniewicz, L., & Convey, P. (2015). Seabird colony effects on soil properties and vegetation zonation patterns on King George Island. Maritime Antarctic. Polar Biology, 38(10), 1645–1655.  https://doi.org/10.1007/s00300-015-1730-z.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Aquatic Systems, Faculty of Environmental Sciences & EULA-Chile CenterUniversidad de ConcepciónConcepciónChile
  2. 2.Departament of Zoology, Faculty of Natural and Oceanographic SciencesUniversidad de ConcepciónConcepciónChile

Personalised recommendations